具有$L^{1}$数据的二阶线性椭圆型方程的Dirichlet问题

IF 1 3区 数学 Q1 MATHEMATICS
Hyunseok Kim, Jisu Oh
{"title":"具有$L^{1}$数据的二阶线性椭圆型方程的Dirichlet问题","authors":"Hyunseok Kim, Jisu Oh","doi":"10.3934/cpaa.2023051","DOIUrl":null,"url":null,"abstract":"We consider the Dirichlet problems for second order linear elliptic equations in non-divergence and divergence forms on a bounded domain $\\Omega$ in $\\mathbb{R}^n$, $n \\ge 2$: $$ -\\sum_{i,j=1}^n a^{ij}D_{ij} u + b \\cdot D u + cu = f \\;\\;\\text{ in $\\Omega$} \\quad \\text{and} \\quad u=0 \\;\\;\\text{ on $\\partial \\Omega$} $$ and $$ - {\\rm div} \\left( A D u \\right) + {\\rm div}(ub) + cu = {\\rm div} F \\;\\;\\text{ in $\\Omega$} \\quad \\text{and} \\quad u=0 \\;\\;\\text{ on $\\partial \\Omega$} , $$ where $A=[a^{ij}]$ is symmetric, uniformly elliptic, and of vanishing mean oscillation (VMO). The main purposes of this paper is to study unique solvability for both problems with $L^1$-data. We prove that if $\\Omega$ is of class $C^{1}$, $ {\\rm div} A + b\\in L^{n,1}(\\Omega;\\mathbb{R}^n)$, $c\\in L^{\\frac{n}{2},1}(\\Omega) \\cap L^s(\\Omega)$ for some $1<s<\\frac{3}{2}$, and $c\\ge0$ in $\\Omega$, then for each $f\\in L^1 (\\Omega )$, there exists a unique weak solution in $W^{1,\\frac{n}{n-1},\\infty}_0 (\\Omega)$ of the first problem. Moreover, under the additional condition that $\\Omega$ is of class $C^{1,1}$ and $c\\in L^{n,1}(\\Omega)$, we show that for each $F \\in L^1 (\\Omega ; \\mathbb{R}^n)$, the second problem has a unique very weak solution in $L^{\\frac{n}{n-1},\\infty}(\\Omega)$.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet problems for second order linear elliptic equations with $ L^{1} $-data\",\"authors\":\"Hyunseok Kim, Jisu Oh\",\"doi\":\"10.3934/cpaa.2023051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Dirichlet problems for second order linear elliptic equations in non-divergence and divergence forms on a bounded domain $\\\\Omega$ in $\\\\mathbb{R}^n$, $n \\\\ge 2$: $$ -\\\\sum_{i,j=1}^n a^{ij}D_{ij} u + b \\\\cdot D u + cu = f \\\\;\\\\;\\\\text{ in $\\\\Omega$} \\\\quad \\\\text{and} \\\\quad u=0 \\\\;\\\\;\\\\text{ on $\\\\partial \\\\Omega$} $$ and $$ - {\\\\rm div} \\\\left( A D u \\\\right) + {\\\\rm div}(ub) + cu = {\\\\rm div} F \\\\;\\\\;\\\\text{ in $\\\\Omega$} \\\\quad \\\\text{and} \\\\quad u=0 \\\\;\\\\;\\\\text{ on $\\\\partial \\\\Omega$} , $$ where $A=[a^{ij}]$ is symmetric, uniformly elliptic, and of vanishing mean oscillation (VMO). The main purposes of this paper is to study unique solvability for both problems with $L^1$-data. We prove that if $\\\\Omega$ is of class $C^{1}$, $ {\\\\rm div} A + b\\\\in L^{n,1}(\\\\Omega;\\\\mathbb{R}^n)$, $c\\\\in L^{\\\\frac{n}{2},1}(\\\\Omega) \\\\cap L^s(\\\\Omega)$ for some $1<s<\\\\frac{3}{2}$, and $c\\\\ge0$ in $\\\\Omega$, then for each $f\\\\in L^1 (\\\\Omega )$, there exists a unique weak solution in $W^{1,\\\\frac{n}{n-1},\\\\infty}_0 (\\\\Omega)$ of the first problem. Moreover, under the additional condition that $\\\\Omega$ is of class $C^{1,1}$ and $c\\\\in L^{n,1}(\\\\Omega)$, we show that for each $F \\\\in L^1 (\\\\Omega ; \\\\mathbb{R}^n)$, the second problem has a unique very weak solution in $L^{\\\\frac{n}{n-1},\\\\infty}(\\\\Omega)$.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023051\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2023051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在$\mathbb{R}^n$, $n \ge 2$: $$ -\sum_{i,j=1}^n a^{ij}D_{ij} u + b \cdot D u + cu = f \;\;\text{ in $\Omega$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial \Omega$} $$和$$ - {\rm div} \left( A D u \right) + {\rm div}(ub) + cu = {\rm div} F \;\;\text{ in $\Omega$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial \Omega$} , $$的有界区域$\Omega$上,考虑二阶线性椭圆方程的非散度和散度形式的Dirichlet问题,其中$A=[a^{ij}]$是对称的,均匀椭圆的,并且具有消失的平均振荡(VMO)。本文的主要目的是研究$L^1$ -数据下这两个问题的唯一可解性。我们证明了如果$\Omega$是$C^{1}$, $ {\rm div} A + b\in L^{n,1}(\Omega;\mathbb{R}^n)$, $c\in L^{\frac{n}{2},1}(\Omega) \cap L^s(\Omega)$对于$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Dirichlet problems for second order linear elliptic equations with $ L^{1} $-data
We consider the Dirichlet problems for second order linear elliptic equations in non-divergence and divergence forms on a bounded domain $\Omega$ in $\mathbb{R}^n$, $n \ge 2$: $$ -\sum_{i,j=1}^n a^{ij}D_{ij} u + b \cdot D u + cu = f \;\;\text{ in $\Omega$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial \Omega$} $$ and $$ - {\rm div} \left( A D u \right) + {\rm div}(ub) + cu = {\rm div} F \;\;\text{ in $\Omega$} \quad \text{and} \quad u=0 \;\;\text{ on $\partial \Omega$} , $$ where $A=[a^{ij}]$ is symmetric, uniformly elliptic, and of vanishing mean oscillation (VMO). The main purposes of this paper is to study unique solvability for both problems with $L^1$-data. We prove that if $\Omega$ is of class $C^{1}$, $ {\rm div} A + b\in L^{n,1}(\Omega;\mathbb{R}^n)$, $c\in L^{\frac{n}{2},1}(\Omega) \cap L^s(\Omega)$ for some $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信