Sara River Dixon Bryant, Clifton Nunnally, Granger Hanks, Craig R. McClain
{"title":"有史以来第一次深海短吻鳄瀑布周围的沉积物中的大型动物大都会","authors":"Sara River Dixon Bryant, Clifton Nunnally, Granger Hanks, Craig R. McClain","doi":"10.1111/maec.12707","DOIUrl":null,"url":null,"abstract":"<p>The maintenance of high diversity in deep-sea sediments is often hypothesized to be a result of heterogeneity in disturbance and carbon availability creating long-lived patches of unique communities. Deep-sea food falls are known to contribute to this patchiness, influencing the beta-diversity of soft-bottom communities through varying effects of enrichment and disturbance. Previous food fall work has centered on large (>1000 kg, e.g., whales) or small (0–10 kg, e.g., kelp, fish, wood) food parcels, leading to the hypothesis that only the largest persist long enough to impact sediment communities. The effect of intermediately sized (10–1000 kg) carcasses on sediment macrofauna communities remains poorly understood. Here, we deployed an individual <i>Alligator mississippiensis</i> carcass (19.5 kg) as organic enrichment to an otherwise food-poor landscape at 2034 m in the northern Gulf of Mexico. Sediment cores collected at three distances from the alligator fall following decomposition were used to describe changes in macrofauna abundance and alpha- and beta-diversity. We found that the carcass enriched nearby sediments with up to three times more carbon than background sediments. This carbon enrichment near the carcass did not influence species richness but did correlate with higher abundance and a suite of species unique from background communities. Our findings suggest that the food fall size threshold above which enrichment of local sediments occurs may be lower than previously thought, as we demonstrate that an intermediately sized (19.5 kg) food fall can contribute carbon and promote beta- and thus gamma- diversity of the infaunal benthos.</p>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"43 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The macrofaunal metropolis in the sediments around the first-ever deep-sea alligator fall\",\"authors\":\"Sara River Dixon Bryant, Clifton Nunnally, Granger Hanks, Craig R. McClain\",\"doi\":\"10.1111/maec.12707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The maintenance of high diversity in deep-sea sediments is often hypothesized to be a result of heterogeneity in disturbance and carbon availability creating long-lived patches of unique communities. Deep-sea food falls are known to contribute to this patchiness, influencing the beta-diversity of soft-bottom communities through varying effects of enrichment and disturbance. Previous food fall work has centered on large (>1000 kg, e.g., whales) or small (0–10 kg, e.g., kelp, fish, wood) food parcels, leading to the hypothesis that only the largest persist long enough to impact sediment communities. The effect of intermediately sized (10–1000 kg) carcasses on sediment macrofauna communities remains poorly understood. Here, we deployed an individual <i>Alligator mississippiensis</i> carcass (19.5 kg) as organic enrichment to an otherwise food-poor landscape at 2034 m in the northern Gulf of Mexico. Sediment cores collected at three distances from the alligator fall following decomposition were used to describe changes in macrofauna abundance and alpha- and beta-diversity. We found that the carcass enriched nearby sediments with up to three times more carbon than background sediments. This carbon enrichment near the carcass did not influence species richness but did correlate with higher abundance and a suite of species unique from background communities. Our findings suggest that the food fall size threshold above which enrichment of local sediments occurs may be lower than previously thought, as we demonstrate that an intermediately sized (19.5 kg) food fall can contribute carbon and promote beta- and thus gamma- diversity of the infaunal benthos.</p>\",\"PeriodicalId\":49883,\"journal\":{\"name\":\"Marine Ecology-An Evolutionary Perspective\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Ecology-An Evolutionary Perspective\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maec.12707\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.12707","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The macrofaunal metropolis in the sediments around the first-ever deep-sea alligator fall
The maintenance of high diversity in deep-sea sediments is often hypothesized to be a result of heterogeneity in disturbance and carbon availability creating long-lived patches of unique communities. Deep-sea food falls are known to contribute to this patchiness, influencing the beta-diversity of soft-bottom communities through varying effects of enrichment and disturbance. Previous food fall work has centered on large (>1000 kg, e.g., whales) or small (0–10 kg, e.g., kelp, fish, wood) food parcels, leading to the hypothesis that only the largest persist long enough to impact sediment communities. The effect of intermediately sized (10–1000 kg) carcasses on sediment macrofauna communities remains poorly understood. Here, we deployed an individual Alligator mississippiensis carcass (19.5 kg) as organic enrichment to an otherwise food-poor landscape at 2034 m in the northern Gulf of Mexico. Sediment cores collected at three distances from the alligator fall following decomposition were used to describe changes in macrofauna abundance and alpha- and beta-diversity. We found that the carcass enriched nearby sediments with up to three times more carbon than background sediments. This carbon enrichment near the carcass did not influence species richness but did correlate with higher abundance and a suite of species unique from background communities. Our findings suggest that the food fall size threshold above which enrichment of local sediments occurs may be lower than previously thought, as we demonstrate that an intermediately sized (19.5 kg) food fall can contribute carbon and promote beta- and thus gamma- diversity of the infaunal benthos.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.