从木质纤维素前体中获得的活性生物炭作为氨的潜在吸附剂

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
K. Jedynak, B. Charmas
{"title":"从木质纤维素前体中获得的活性生物炭作为氨的潜在吸附剂","authors":"K. Jedynak, B. Charmas","doi":"10.37190/ppmp/169835","DOIUrl":null,"url":null,"abstract":"The investigated materials were new biocarbons: FC (Fir Cone), FS (Fir Sawdust), FB (Fir Bark), BS (Birch Sawdust), BB (Birch Bark), AS (Acacia Sawdust), AB (Acacia Bark), OS (Oak Sawdust), OB (Oak Bark), HS (Hornbeam Sawdust)) obtained via pyrolysis and CO2 activation of wood waste (lignocellulosic biomass). In order to study the influence of the carbon precursor on the physicochemical properties of biocarbons there were used the precursors: cones, sawdust, and bark of various tree species. The obtained adsorbents were characterized based on the results, of the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), Fourier Transform Infrared Spectroscopy FT-IR (ATR) and the Boehm’s titration method as well as pHpzc (the point of zero charge). The adsorption capacity and the temperature-programmed desorption (TPD) of ammonia were also studied. The obtained activated biocarbons were characterized by the large specific surface area (515 to 1286 m2/g) and the total pore volume (0.27 to 0.46 cm3/g) as well as the well-developed microporous structure (76 - 90%). The maximum NH3 adsorption capacity of the activated biocarbon was determined to be 2.93 mmol/g (FC (Fir Cone)). These results prove that the lignocellulosic precursors are appropriate for preparation of environmentally friendly and cost-effective biocarbons.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated biocarbons obtained from lignocellulosic precursors as potential adsorbents of ammonia\",\"authors\":\"K. Jedynak, B. Charmas\",\"doi\":\"10.37190/ppmp/169835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigated materials were new biocarbons: FC (Fir Cone), FS (Fir Sawdust), FB (Fir Bark), BS (Birch Sawdust), BB (Birch Bark), AS (Acacia Sawdust), AB (Acacia Bark), OS (Oak Sawdust), OB (Oak Bark), HS (Hornbeam Sawdust)) obtained via pyrolysis and CO2 activation of wood waste (lignocellulosic biomass). In order to study the influence of the carbon precursor on the physicochemical properties of biocarbons there were used the precursors: cones, sawdust, and bark of various tree species. The obtained adsorbents were characterized based on the results, of the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), Fourier Transform Infrared Spectroscopy FT-IR (ATR) and the Boehm’s titration method as well as pHpzc (the point of zero charge). The adsorption capacity and the temperature-programmed desorption (TPD) of ammonia were also studied. The obtained activated biocarbons were characterized by the large specific surface area (515 to 1286 m2/g) and the total pore volume (0.27 to 0.46 cm3/g) as well as the well-developed microporous structure (76 - 90%). The maximum NH3 adsorption capacity of the activated biocarbon was determined to be 2.93 mmol/g (FC (Fir Cone)). These results prove that the lignocellulosic precursors are appropriate for preparation of environmentally friendly and cost-effective biocarbons.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/169835\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/169835","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

所研究的材料是通过木材废物(木质纤维素生物质)的热解和CO2活化获得的新的生物碳:FC(冷杉锥)、FS(冷杉木屑)、FB(冷杉树皮)、BS(桦木木屑)、BB(桦木树皮)、AS(Acacia木屑)、AB(Acacia树皮)、OS(橡树木屑)、OB(橡树树皮)、HS(Hornbeam木屑)。为了研究碳前体对生物碳物理化学性质的影响,使用了各种树种的前体:球果、锯末和树皮。基于N2吸附、扫描电子显微镜(SEM)、元素分析(CHNS)、热重分析(TG)、导数热重分析和差热分析(DTA)、傅立叶变换红外光谱FT-IR(ATR)和Boehm滴定法以及pHpzc(零电荷点)的结果对所获得的吸附剂进行了表征。并对氨的吸附容量和程序升温脱附(TPD)进行了研究。所获得的活性生物炭的特征在于大的比表面积(515至1286m2/g)和总孔体积(0.27至0.46cm3/g)以及发达的微孔结构(76-90%)。活性生物碳的最大NH3吸附容量被确定为2.93mmol/g(FC(Fir-Cone))。这些结果证明木质纤维素前体适合于制备环境友好且具有成本效益的生物碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activated biocarbons obtained from lignocellulosic precursors as potential adsorbents of ammonia
The investigated materials were new biocarbons: FC (Fir Cone), FS (Fir Sawdust), FB (Fir Bark), BS (Birch Sawdust), BB (Birch Bark), AS (Acacia Sawdust), AB (Acacia Bark), OS (Oak Sawdust), OB (Oak Bark), HS (Hornbeam Sawdust)) obtained via pyrolysis and CO2 activation of wood waste (lignocellulosic biomass). In order to study the influence of the carbon precursor on the physicochemical properties of biocarbons there were used the precursors: cones, sawdust, and bark of various tree species. The obtained adsorbents were characterized based on the results, of the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), Fourier Transform Infrared Spectroscopy FT-IR (ATR) and the Boehm’s titration method as well as pHpzc (the point of zero charge). The adsorption capacity and the temperature-programmed desorption (TPD) of ammonia were also studied. The obtained activated biocarbons were characterized by the large specific surface area (515 to 1286 m2/g) and the total pore volume (0.27 to 0.46 cm3/g) as well as the well-developed microporous structure (76 - 90%). The maximum NH3 adsorption capacity of the activated biocarbon was determined to be 2.93 mmol/g (FC (Fir Cone)). These results prove that the lignocellulosic precursors are appropriate for preparation of environmentally friendly and cost-effective biocarbons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信