C. Loring, W. J. Ogden, Ely Sandine, R. Strichartz
{"title":"关于不同拉普拉斯算子的Sierpiński垫圈上的多项式是对称的和自相似的","authors":"C. Loring, W. J. Ogden, Ely Sandine, R. Strichartz","doi":"10.4171/jfg/95","DOIUrl":null,"url":null,"abstract":"We study the analogue of polynomials (solutions to $\\Delta u^{n+1} =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain \"derivative\" is 1 at one of the boundary points, while all other \"derivatives\" vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Polynomials on the Sierpiński gasket with respect to different Laplacians which are symmetric and self-similar\",\"authors\":\"C. Loring, W. J. Ogden, Ely Sandine, R. Strichartz\",\"doi\":\"10.4171/jfg/95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the analogue of polynomials (solutions to $\\\\Delta u^{n+1} =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain \\\"derivative\\\" is 1 at one of the boundary points, while all other \\\"derivatives\\\" vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/95\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/95","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polynomials on the Sierpiński gasket with respect to different Laplacians which are symmetric and self-similar
We study the analogue of polynomials (solutions to $\Delta u^{n+1} =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain "derivative" is 1 at one of the boundary points, while all other "derivatives" vanish, and we compute the values of the monomials at the boundary points of $SG$. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.