移动纳米镊子有效热管理的设计考虑

IF 1.6 Q3 ROBOTICS
Souvik Ghosh, Ambarish Ghosh
{"title":"移动纳米镊子有效热管理的设计考虑","authors":"Souvik Ghosh, Ambarish Ghosh","doi":"10.1109/MARSS.2019.8860942","DOIUrl":null,"url":null,"abstract":"Controlled manipulation of nanoscale objects in fluids is relevant to both fundamental studies and technological advances in nanotechnology. While standard techniques of nanomanipulation, such as optical and plasmonic tweezers have limitations in simultaneous trapping and transport of nanoscale cargo, magnetically driven plasmonic nanorobots under optical illumination provide a promising solution. These so called mobile nanotweezers (MNT) use strongly localized electromagnetic field near plasmonic nanostructures to trap objects with high efficiency and can simultaneously be driven by magnetic fields to selectively trap, transport and release colloidal cargo. Upon illumination, apart from strong optical gradient forces due to local electric field enhancement, additional fluidic forces arise due to the heat generated by absorption of light. Here, we present a method to understand and engineer thermally induced fluidic forces in mobile nanotweezers. The temperature enhancement and associated thermofluidic forces are studied as a function of MNT geometry. We also discuss illumination at wavelengths slightly detuned from plasmon resonance frequency, which produces sufficient field enhancement with negligible generation of heat, and therefore much reduced thermophoretic and convective forces. This allowed us to engineer thermoplasmonic forces in MNTs for enhanced trapping performance and diverse applications.","PeriodicalId":44493,"journal":{"name":"Journal of Micro-Bio Robotics","volume":"16 1","pages":"33-42"},"PeriodicalIF":1.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MARSS.2019.8860942","citationCount":"4","resultStr":"{\"title\":\"Design considerations for effective thermal management in mobile nanotweezers\",\"authors\":\"Souvik Ghosh, Ambarish Ghosh\",\"doi\":\"10.1109/MARSS.2019.8860942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled manipulation of nanoscale objects in fluids is relevant to both fundamental studies and technological advances in nanotechnology. While standard techniques of nanomanipulation, such as optical and plasmonic tweezers have limitations in simultaneous trapping and transport of nanoscale cargo, magnetically driven plasmonic nanorobots under optical illumination provide a promising solution. These so called mobile nanotweezers (MNT) use strongly localized electromagnetic field near plasmonic nanostructures to trap objects with high efficiency and can simultaneously be driven by magnetic fields to selectively trap, transport and release colloidal cargo. Upon illumination, apart from strong optical gradient forces due to local electric field enhancement, additional fluidic forces arise due to the heat generated by absorption of light. Here, we present a method to understand and engineer thermally induced fluidic forces in mobile nanotweezers. The temperature enhancement and associated thermofluidic forces are studied as a function of MNT geometry. We also discuss illumination at wavelengths slightly detuned from plasmon resonance frequency, which produces sufficient field enhancement with negligible generation of heat, and therefore much reduced thermophoretic and convective forces. This allowed us to engineer thermoplasmonic forces in MNTs for enhanced trapping performance and diverse applications.\",\"PeriodicalId\":44493,\"journal\":{\"name\":\"Journal of Micro-Bio Robotics\",\"volume\":\"16 1\",\"pages\":\"33-42\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/MARSS.2019.8860942\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro-Bio Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2019.8860942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro-Bio Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2019.8860942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 4

摘要

对流体中纳米级物体的控制与纳米技术的基础研究和技术进步有关。虽然标准的纳米操作技术,如光学和等离子体镊子在同时捕获和运输纳米级货物方面存在局限性,但光学照明下的磁驱动等离子体纳米机器人提供了一个很有前途的解决方案。这些所谓的移动纳米镊子(MNT)利用等离子体纳米结构附近的强局域电磁场高效捕获物体,同时可以在磁场的驱动下选择性地捕获、运输和释放胶体货物。光照后,除了由于局部电场增强而产生的强光学梯度力外,由于吸收光而产生的热还会产生额外的流体力。在这里,我们提出了一种理解和设计移动纳米镊子中热诱导流体力的方法。研究了温度增强和相关的热流体力作为MNT几何形状的函数。我们还讨论了与等离子体共振频率稍微失谐的波长的照明,它产生足够的场增强,而产生的热量可以忽略不计,因此大大减少了热电泳和对流力。这使我们能够在mnt中设计热等离子体力,以增强捕获性能和各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design considerations for effective thermal management in mobile nanotweezers
Controlled manipulation of nanoscale objects in fluids is relevant to both fundamental studies and technological advances in nanotechnology. While standard techniques of nanomanipulation, such as optical and plasmonic tweezers have limitations in simultaneous trapping and transport of nanoscale cargo, magnetically driven plasmonic nanorobots under optical illumination provide a promising solution. These so called mobile nanotweezers (MNT) use strongly localized electromagnetic field near plasmonic nanostructures to trap objects with high efficiency and can simultaneously be driven by magnetic fields to selectively trap, transport and release colloidal cargo. Upon illumination, apart from strong optical gradient forces due to local electric field enhancement, additional fluidic forces arise due to the heat generated by absorption of light. Here, we present a method to understand and engineer thermally induced fluidic forces in mobile nanotweezers. The temperature enhancement and associated thermofluidic forces are studied as a function of MNT geometry. We also discuss illumination at wavelengths slightly detuned from plasmon resonance frequency, which produces sufficient field enhancement with negligible generation of heat, and therefore much reduced thermophoretic and convective forces. This allowed us to engineer thermoplasmonic forces in MNTs for enhanced trapping performance and diverse applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
4
期刊介绍: The Journal of Micro-Bio Robotics (JMBR) focuses on small-scale robotic systems, which could be also biologically inspired, integrated with biological entities, or used for biological or biomedical applications. The journal aims to report the significant progresses in such new research topics. JMBR is devoted to the theory, experiments, and applications of micro/nano- and biotechnologies and small-scale robotics. It promotes both theoretical and practical engineering research based on the analysis and synthesis from the micro/nano level to the biological level of robotics. JMBR includes survey and research articles.  Authors are invited to submit their original research articles or review articles for publication consideration. All submissions will be peer reviewed subject to the standards of the journal. Manuscripts based on previously published conference papers must be extended substantially.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信