机载多分区系统可调度性分析算法研究

Q3 Engineering
Min Zhang, Junsheng Wu, Xining Cui, Jingchang Sun
{"title":"机载多分区系统可调度性分析算法研究","authors":"Min Zhang, Junsheng Wu, Xining Cui, Jingchang Sun","doi":"10.1051/jnwpu/20234130557","DOIUrl":null,"url":null,"abstract":"Partition operating system conforming to ARINC653 is widely used in airborne to support application software integration. Under the two-level scheduling model for partition operating system, the demanding real-time requirements of airborne software are usually difficult to obtain effective deterministic guarantee, so it is very important to analyze the schedulability of the system. Judging whether the scheduling table can meet the real-time requirements of the process in the partition through the schedulability analysis algorithm is an effective means to ensure that all processes in the system complete the computing task within the specified time. Based on the method of operations research and the introduction of virtual process, a schedulability analysis algorithm for multi partition system is designed, and the numerical verification is carried out. The verification results show that the algorithm can accurately judge whether the scheduling table matches the process time attribute, give the qualitative analysis conclusion of whether the system can be scheduled, help the system integrator to verify the rationality of the scheduling table before the actual operation of the system, and reduce the risk of test and flight test.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on schedulability analysis algorithm of airborne multi partition system\",\"authors\":\"Min Zhang, Junsheng Wu, Xining Cui, Jingchang Sun\",\"doi\":\"10.1051/jnwpu/20234130557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partition operating system conforming to ARINC653 is widely used in airborne to support application software integration. Under the two-level scheduling model for partition operating system, the demanding real-time requirements of airborne software are usually difficult to obtain effective deterministic guarantee, so it is very important to analyze the schedulability of the system. Judging whether the scheduling table can meet the real-time requirements of the process in the partition through the schedulability analysis algorithm is an effective means to ensure that all processes in the system complete the computing task within the specified time. Based on the method of operations research and the introduction of virtual process, a schedulability analysis algorithm for multi partition system is designed, and the numerical verification is carried out. The verification results show that the algorithm can accurately judge whether the scheduling table matches the process time attribute, give the qualitative analysis conclusion of whether the system can be scheduled, help the system integrator to verify the rationality of the scheduling table before the actual operation of the system, and reduce the risk of test and flight test.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20234130557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234130557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

符合ARINC653标准的分区操作系统被广泛应用于机载系统中,以支持应用软件集成。在分区操作系统两级调度模型下,机载软件对实时性的要求很高,往往难以获得有效的确定性保证,因此对系统的可调度性进行分析显得十分重要。通过可调度性分析算法判断调度表是否能满足分区内进程的实时性要求,是保证系统中所有进程在规定时间内完成计算任务的有效手段。基于运筹学方法和虚拟进程的引入,设计了一种多分区系统的可调度性分析算法,并进行了数值验证。验证结果表明,该算法能准确判断调度表是否与工艺时间属性匹配,给出系统能否调度的定性分析结论,帮助系统集成商在系统实际运行前验证调度表的合理性,降低试验和飞行试验的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on schedulability analysis algorithm of airborne multi partition system
Partition operating system conforming to ARINC653 is widely used in airborne to support application software integration. Under the two-level scheduling model for partition operating system, the demanding real-time requirements of airborne software are usually difficult to obtain effective deterministic guarantee, so it is very important to analyze the schedulability of the system. Judging whether the scheduling table can meet the real-time requirements of the process in the partition through the schedulability analysis algorithm is an effective means to ensure that all processes in the system complete the computing task within the specified time. Based on the method of operations research and the introduction of virtual process, a schedulability analysis algorithm for multi partition system is designed, and the numerical verification is carried out. The verification results show that the algorithm can accurately judge whether the scheduling table matches the process time attribute, give the qualitative analysis conclusion of whether the system can be scheduled, help the system integrator to verify the rationality of the scheduling table before the actual operation of the system, and reduce the risk of test and flight test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信