CFA模与局部同源模的共缔合素数的有限性

Pub Date : 2021-07-01 DOI:10.32917/H2020073
N. Tri
{"title":"CFA模与局部同源模的共缔合素数的有限性","authors":"N. Tri","doi":"10.32917/H2020073","DOIUrl":null,"url":null,"abstract":"We introduce the concept CFA modules and their applications in investigation the coassociated primes of local homology modules. The main result of this paper says that if $M$ is a CFA linearly compact $R$-module and $t$ is a non-negative integer such that H i I ( M ) is CFA for all $i < t$, then R / I ⊗ R H t I ( M ) is CFA. Hence, the set $\\mathrm{Coass}_R$ H t I ( M ) is finite.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CFA modules and the finiteness of coassociated primes of local homology modules\",\"authors\":\"N. Tri\",\"doi\":\"10.32917/H2020073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept CFA modules and their applications in investigation the coassociated primes of local homology modules. The main result of this paper says that if $M$ is a CFA linearly compact $R$-module and $t$ is a non-negative integer such that H i I ( M ) is CFA for all $i < t$, then R / I ⊗ R H t I ( M ) is CFA. Hence, the set $\\\\mathrm{Coass}_R$ H t I ( M ) is finite.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/H2020073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/H2020073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了CFA模的概念及其在研究局部同源模的共缔合素数中的应用。本文的主要结果表明,如果$M$是CFA线性紧致$R$-模,$t$是一个非负整数,使得H i i(M)是所有$i<t$的CFA,那么R/i⊗R H t i(M)是CFA。因此,集合$\mathrm{Coass}_R$HtI(M)是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CFA modules and the finiteness of coassociated primes of local homology modules
We introduce the concept CFA modules and their applications in investigation the coassociated primes of local homology modules. The main result of this paper says that if $M$ is a CFA linearly compact $R$-module and $t$ is a non-negative integer such that H i I ( M ) is CFA for all $i < t$, then R / I ⊗ R H t I ( M ) is CFA. Hence, the set $\mathrm{Coass}_R$ H t I ( M ) is finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信