环境应力检测中的遥感机器学习算法——以塞尔维亚10号走廊泛欧南段为例

Ivan Potić, M. Potić
{"title":"环境应力检测中的遥感机器学习算法——以塞尔维亚10号走廊泛欧南段为例","authors":"Ivan Potić, M. Potić","doi":"10.5937/UNIVTHO7-14957","DOIUrl":null,"url":null,"abstract":"The construction of the Pan-European Corridor 10 is one of the major projects in the Republic of Serbia, and it enters the final phase. A vast natural area suffered a significant change to complete the project and therefore is the existence of a need to monitor those changes. Nature requires adequate and accurate detection of environmental stresses which inevitably arise after implementation of such large construction projects. Conversely to traditional field monitoring of the environment, this paper will present the remote sensing method which includes usage of European Space Agency's Sentinel 2A optical satellite data processed with different Machine Learning algorithms. An accuracy assessment is performed on land cover map results, and change detection carried out with best resulting data.","PeriodicalId":22896,"journal":{"name":"The University Thought - Publication in Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"REMOTE SENSING MACHINE LEARNING ALGORITHMS IN ENVIRONMENTAL STRESS DETECTION - CASE STUDY OF PAN-EUROPEAN SOUTH SECTION OF CORRIDOR 10 IN SERBIA\",\"authors\":\"Ivan Potić, M. Potić\",\"doi\":\"10.5937/UNIVTHO7-14957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of the Pan-European Corridor 10 is one of the major projects in the Republic of Serbia, and it enters the final phase. A vast natural area suffered a significant change to complete the project and therefore is the existence of a need to monitor those changes. Nature requires adequate and accurate detection of environmental stresses which inevitably arise after implementation of such large construction projects. Conversely to traditional field monitoring of the environment, this paper will present the remote sensing method which includes usage of European Space Agency's Sentinel 2A optical satellite data processed with different Machine Learning algorithms. An accuracy assessment is performed on land cover map results, and change detection carried out with best resulting data.\",\"PeriodicalId\":22896,\"journal\":{\"name\":\"The University Thought - Publication in Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The University Thought - Publication in Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/UNIVTHO7-14957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The University Thought - Publication in Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/UNIVTHO7-14957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

泛欧走廊10号的建设是塞尔维亚共和国的重大项目之一,目前已进入最后阶段。为了完成这个项目,一个巨大的自然区域发生了重大变化,因此有必要监测这些变化。大自然需要充分和准确地检测在实施这些大型建设项目后不可避免地出现的环境应力。与传统的野外环境监测相反,本文将介绍遥感方法,其中包括使用欧洲航天局的Sentinel 2A光学卫星数据,并使用不同的机器学习算法进行处理。对土地覆盖图结果进行准确性评估,并根据最佳结果数据进行变化检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REMOTE SENSING MACHINE LEARNING ALGORITHMS IN ENVIRONMENTAL STRESS DETECTION - CASE STUDY OF PAN-EUROPEAN SOUTH SECTION OF CORRIDOR 10 IN SERBIA
The construction of the Pan-European Corridor 10 is one of the major projects in the Republic of Serbia, and it enters the final phase. A vast natural area suffered a significant change to complete the project and therefore is the existence of a need to monitor those changes. Nature requires adequate and accurate detection of environmental stresses which inevitably arise after implementation of such large construction projects. Conversely to traditional field monitoring of the environment, this paper will present the remote sensing method which includes usage of European Space Agency's Sentinel 2A optical satellite data processed with different Machine Learning algorithms. An accuracy assessment is performed on land cover map results, and change detection carried out with best resulting data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信