区间交换若干群的阿贝尔化

Pub Date : 2020-09-16 DOI:10.5802/aif.3466
Octave Lacourte
{"title":"区间交换若干群的阿贝尔化","authors":"Octave Lacourte","doi":"10.5802/aif.3466","DOIUrl":null,"url":null,"abstract":"Let IET be the group of bijections from $\\mathopen{[}0,1 \\mathclose{[}$ to itself that are continuous outside a finite set, right-continuous and piecewise translations. The abelianization homomorphism $f: \\text{IET} \\to A$, called SAF-homomorphism, was described by Arnoux-Fathi and Sah. The abelian group $A$ is the second exterior power of the reals over the rationals. For every subgroup $\\Gamma$ of $\\mathbb{R/Z}$ we define $\\text{IET}(\\Gamma)$ as the subgroup of $\\text{IET}$ consisting of all elements $f$ such that $f$ is continuous outside $\\Gamma$. Let $\\tilde{\\Gamma}$ be the preimage of $\\Gamma$ in $\\mathbb{R}$. We establish an isomorphism between the abelianization of $\\text{IET}(\\Gamma)$ and the second skew-symmetric power of $\\tilde{\\Gamma}$ over $\\mathbb{Z}$ denoted by ${}^\\circleddash\\!\\!\\bigwedge^2_{\\mathbb{Z}} \\tilde{\\Gamma}$. This group often has non-trivial $2$-torsion, which is not detected by the SAF-homomorphism. We then define $\\text{IET}^{\\bowtie}$ the group of all interval exchange transformations with flips. Arnoux proved that this group is simple thus perfect. However for every subgroup $\\text{IET}^{\\bowtie}(\\Gamma)$ we establish an isomorphism between its abelianization and $\\langle \\lbrace a \\otimes a ~ [\\text{mod}~2] \\mid a \\in \\tilde{\\Gamma} \\rbrace \\rangle \\times \\langle \\lbrace \\ell \\wedge \\ell ~ [\\text{mod}~2] \\mid \\ell \\in \\tilde{\\Gamma} \\rbrace \\rangle$ which is a $2$-elementary abelian subgroup of $\\bigotimes^2_{\\mathbb{Z}} \\tilde{\\Gamma} / (2\\bigotimes^2_{\\mathbb{Z}} \\tilde{\\Gamma}) \\times {}^\\circleddash\\!\\!\\bigwedge^2_{\\mathbb{Z}} \\tilde{\\Gamma} / (2 {}^\\circleddash\\!\\!\\bigwedge^2_{\\mathbb{Z}} \\tilde{\\Gamma})$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Abelianization of some groups of interval exchanges\",\"authors\":\"Octave Lacourte\",\"doi\":\"10.5802/aif.3466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let IET be the group of bijections from $\\\\mathopen{[}0,1 \\\\mathclose{[}$ to itself that are continuous outside a finite set, right-continuous and piecewise translations. The abelianization homomorphism $f: \\\\text{IET} \\\\to A$, called SAF-homomorphism, was described by Arnoux-Fathi and Sah. The abelian group $A$ is the second exterior power of the reals over the rationals. For every subgroup $\\\\Gamma$ of $\\\\mathbb{R/Z}$ we define $\\\\text{IET}(\\\\Gamma)$ as the subgroup of $\\\\text{IET}$ consisting of all elements $f$ such that $f$ is continuous outside $\\\\Gamma$. Let $\\\\tilde{\\\\Gamma}$ be the preimage of $\\\\Gamma$ in $\\\\mathbb{R}$. We establish an isomorphism between the abelianization of $\\\\text{IET}(\\\\Gamma)$ and the second skew-symmetric power of $\\\\tilde{\\\\Gamma}$ over $\\\\mathbb{Z}$ denoted by ${}^\\\\circleddash\\\\!\\\\!\\\\bigwedge^2_{\\\\mathbb{Z}} \\\\tilde{\\\\Gamma}$. This group often has non-trivial $2$-torsion, which is not detected by the SAF-homomorphism. We then define $\\\\text{IET}^{\\\\bowtie}$ the group of all interval exchange transformations with flips. Arnoux proved that this group is simple thus perfect. However for every subgroup $\\\\text{IET}^{\\\\bowtie}(\\\\Gamma)$ we establish an isomorphism between its abelianization and $\\\\langle \\\\lbrace a \\\\otimes a ~ [\\\\text{mod}~2] \\\\mid a \\\\in \\\\tilde{\\\\Gamma} \\\\rbrace \\\\rangle \\\\times \\\\langle \\\\lbrace \\\\ell \\\\wedge \\\\ell ~ [\\\\text{mod}~2] \\\\mid \\\\ell \\\\in \\\\tilde{\\\\Gamma} \\\\rbrace \\\\rangle$ which is a $2$-elementary abelian subgroup of $\\\\bigotimes^2_{\\\\mathbb{Z}} \\\\tilde{\\\\Gamma} / (2\\\\bigotimes^2_{\\\\mathbb{Z}} \\\\tilde{\\\\Gamma}) \\\\times {}^\\\\circleddash\\\\!\\\\!\\\\bigwedge^2_{\\\\mathbb{Z}} \\\\tilde{\\\\Gamma} / (2 {}^\\\\circleddash\\\\!\\\\!\\\\bigwedge^2_{\\\\mathbb{Z}} \\\\tilde{\\\\Gamma})$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设IET为一组从$\mathopen{[}0,1 \mathclose{[}$到自身的双射,它们在有限集合外连续,右连续和分段平移。阿贝尔化同态$f: \text{IET} \to A$,称为saf同态,是由Arnoux-Fathi和Sah描述的。阿贝尔群$A$是实数对有理数的第二个外部幂。对于$\mathbb{R/Z}$的每个子组$\Gamma$,我们将$\text{IET}(\Gamma)$定义为$\text{IET}$的子组,由所有元素$f$组成,使得$f$在$\Gamma$之外连续。设$\tilde{\Gamma}$为$\mathbb{R}$中的$\Gamma$的原映像。建立了$\text{IET}(\Gamma)$的阿贝尔化与$\tilde{\Gamma}$ / $\mathbb{Z}$的二阶偏对称幂(表示为${}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma}$)之间的同构关系。这个群通常具有不平凡的$2$ -扭转,这是saf同态检测不到的。然后我们定义$\text{IET}^{\bowtie}$所有带翻转的区间交换变换的集合。Arnoux证明了这个群体是简单的,因此是完美的。然而对于每一个子群$\text{IET}^{\bowtie}(\Gamma)$,我们建立了它的阿贝尔化与$\langle \lbrace a \otimes a ~ [\text{mod}~2] \mid a \in \tilde{\Gamma} \rbrace \rangle \times \langle \lbrace \ell \wedge \ell ~ [\text{mod}~2] \mid \ell \in \tilde{\Gamma} \rbrace \rangle$之间的同构,这是$\bigotimes^2_{\mathbb{Z}} \tilde{\Gamma} / (2\bigotimes^2_{\mathbb{Z}} \tilde{\Gamma}) \times {}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma} / (2 {}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma})$的一个$2$ -初等阿贝尔子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Abelianization of some groups of interval exchanges
Let IET be the group of bijections from $\mathopen{[}0,1 \mathclose{[}$ to itself that are continuous outside a finite set, right-continuous and piecewise translations. The abelianization homomorphism $f: \text{IET} \to A$, called SAF-homomorphism, was described by Arnoux-Fathi and Sah. The abelian group $A$ is the second exterior power of the reals over the rationals. For every subgroup $\Gamma$ of $\mathbb{R/Z}$ we define $\text{IET}(\Gamma)$ as the subgroup of $\text{IET}$ consisting of all elements $f$ such that $f$ is continuous outside $\Gamma$. Let $\tilde{\Gamma}$ be the preimage of $\Gamma$ in $\mathbb{R}$. We establish an isomorphism between the abelianization of $\text{IET}(\Gamma)$ and the second skew-symmetric power of $\tilde{\Gamma}$ over $\mathbb{Z}$ denoted by ${}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma}$. This group often has non-trivial $2$-torsion, which is not detected by the SAF-homomorphism. We then define $\text{IET}^{\bowtie}$ the group of all interval exchange transformations with flips. Arnoux proved that this group is simple thus perfect. However for every subgroup $\text{IET}^{\bowtie}(\Gamma)$ we establish an isomorphism between its abelianization and $\langle \lbrace a \otimes a ~ [\text{mod}~2] \mid a \in \tilde{\Gamma} \rbrace \rangle \times \langle \lbrace \ell \wedge \ell ~ [\text{mod}~2] \mid \ell \in \tilde{\Gamma} \rbrace \rangle$ which is a $2$-elementary abelian subgroup of $\bigotimes^2_{\mathbb{Z}} \tilde{\Gamma} / (2\bigotimes^2_{\mathbb{Z}} \tilde{\Gamma}) \times {}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma} / (2 {}^\circleddash\!\!\bigwedge^2_{\mathbb{Z}} \tilde{\Gamma})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信