锯齿形屋顶隔离建筑屋檐和屋顶间距对交叉通风的影响

IF 1.1 Q4 ENGINEERING, MECHANICAL
L. K. Moey, Seng Keat Cheong, Md Akkik Al Zobaied, V. Tai, T. F. Go, P. L. Chong
{"title":"锯齿形屋顶隔离建筑屋檐和屋顶间距对交叉通风的影响","authors":"L. K. Moey, Seng Keat Cheong, Md Akkik Al Zobaied, V. Tai, T. F. Go, P. L. Chong","doi":"10.15282/jmes.17.2.2023.6.0750","DOIUrl":null,"url":null,"abstract":"An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of eave and roof pitch on cross ventilation for an isolated building with sawtooth roof\",\"authors\":\"L. K. Moey, Seng Keat Cheong, Md Akkik Al Zobaied, V. Tai, T. F. Go, P. L. Chong\",\"doi\":\"10.15282/jmes.17.2.2023.6.0750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.2.2023.6.0750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.6.0750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

屋檐是指附着在建筑屋顶上的延伸部分,以保护内部空间免受太阳的直接辐射,并提高交叉通风的性能。在本研究中,研究了一个孤立的锯齿形屋顶建筑的屋檐倾角和屋顶间距对交叉通风的影响。包括向风或背风开口处的屋檐配置。三维稳态雷诺平均纳维-斯托克斯方程与剪切应力传输模型(SST k-ω模型)相结合用于计算流体动力学(CFD)模拟。基于建筑物的无量纲速度大小、压力系数的空间分布以及通风率,进行了网格敏感性研究,并对交叉通风的性能进行了评估。对于具有55°屋顶节距的模拟模型,观察到由于较高的屋顶节距和背风屋檐的存在,在背风屋檐顶部形成了一个高速度量级的区域。结果还表明,90°背风檐和55°屋顶间距的建筑模型的通风率增量最高,为7.16%。另一方面,90°风檐的建筑模型具有最高的压力系数,因为随着建筑屋顶间距的增加,更陡的屋顶会导致更多的气流堵塞。此外,具有90°背风屋檐的建筑模型显示了一个较大的区域,背风立面的负压表明离开背风开口的气流较高。因此,自然通风建筑的气流行为和特性都取决于屋顶间距和屋檐倾角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of eave and roof pitch on cross ventilation for an isolated building with sawtooth roof
An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信