{"title":"再生橡胶颗粒对混凝土除冰盐结垢耐久性的影响","authors":"Layachi Guelmine, H. Hadjab","doi":"10.21926/rpm.2103033","DOIUrl":null,"url":null,"abstract":"The present study investigated the effect of reused rubber particles (RRP) on the deicer salt durability of ordinary concrete. Four mixtures were designed, a control concrete (CC) and three other rubber concretes obtained by partial substitution of natural dune sand aggregate with reused rubber particles with 0%, 3%, 6%, and 9% w/w. All studied concretes were subjected to the combined effect of freeze/thaw (56 and 120) cycles with the deicer salt solution of 3% NaCl. The results indicated that RRP improved the deicer-salt scaling resistance of rubber concrete strongly compared with the control. The observed innovative property of RRP could be applied to cement-based materials to improve their deicer salt durability. Further, this environmentally friendly practice could reduce the stock of waste tires and offer a renewable source of construction aggregates.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Recycled Rubber Particles on the Deicing Salt-Scaling Durability of Concrete\",\"authors\":\"Layachi Guelmine, H. Hadjab\",\"doi\":\"10.21926/rpm.2103033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigated the effect of reused rubber particles (RRP) on the deicer salt durability of ordinary concrete. Four mixtures were designed, a control concrete (CC) and three other rubber concretes obtained by partial substitution of natural dune sand aggregate with reused rubber particles with 0%, 3%, 6%, and 9% w/w. All studied concretes were subjected to the combined effect of freeze/thaw (56 and 120) cycles with the deicer salt solution of 3% NaCl. The results indicated that RRP improved the deicer-salt scaling resistance of rubber concrete strongly compared with the control. The observed innovative property of RRP could be applied to cement-based materials to improve their deicer salt durability. Further, this environmentally friendly practice could reduce the stock of waste tires and offer a renewable source of construction aggregates.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2103033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2103033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Recycled Rubber Particles on the Deicing Salt-Scaling Durability of Concrete
The present study investigated the effect of reused rubber particles (RRP) on the deicer salt durability of ordinary concrete. Four mixtures were designed, a control concrete (CC) and three other rubber concretes obtained by partial substitution of natural dune sand aggregate with reused rubber particles with 0%, 3%, 6%, and 9% w/w. All studied concretes were subjected to the combined effect of freeze/thaw (56 and 120) cycles with the deicer salt solution of 3% NaCl. The results indicated that RRP improved the deicer-salt scaling resistance of rubber concrete strongly compared with the control. The observed innovative property of RRP could be applied to cement-based materials to improve their deicer salt durability. Further, this environmentally friendly practice could reduce the stock of waste tires and offer a renewable source of construction aggregates.