动态概率领域的风险评估和指导解决方案

Edwin A. Williams, Yan Jin
{"title":"动态概率领域的风险评估和指导解决方案","authors":"Edwin A. Williams, Yan Jin","doi":"10.1515/aon-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract Standard Guidance, Navigation, and Control (GN&C) systems take state data from a navigation system and create a trajectory that minimizes some a-priori determined cost function. These cost functions are typically time, money, weight, or any general physically realizable quantity. Previous work has been done to show the effectiveness of using risk as the sole objective function. However, this previous work used Poisson distributions and historical estimates to achieve this goal. In this paper we present the situation-risk assessment (SRA) method contained within the intelligent situation assessment and collision avoidance (iSC) platform. The SRA method uses data clustering, and pattern recognition to create a historically based estimate of guidance probabilities. These are then used in data driven, dynamic models to create the future probability fields of the situation. This probability, along with the other agent’s goals and objectives, are then used to create a minimum risk guidance solution in the nautical environment.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"26 1","pages":"33 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Probability Fields for Risk Assessment and Guidance Solutions\",\"authors\":\"Edwin A. Williams, Yan Jin\",\"doi\":\"10.1515/aon-2019-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Standard Guidance, Navigation, and Control (GN&C) systems take state data from a navigation system and create a trajectory that minimizes some a-priori determined cost function. These cost functions are typically time, money, weight, or any general physically realizable quantity. Previous work has been done to show the effectiveness of using risk as the sole objective function. However, this previous work used Poisson distributions and historical estimates to achieve this goal. In this paper we present the situation-risk assessment (SRA) method contained within the intelligent situation assessment and collision avoidance (iSC) platform. The SRA method uses data clustering, and pattern recognition to create a historically based estimate of guidance probabilities. These are then used in data driven, dynamic models to create the future probability fields of the situation. This probability, along with the other agent’s goals and objectives, are then used to create a minimum risk guidance solution in the nautical environment.\",\"PeriodicalId\":30601,\"journal\":{\"name\":\"Annual of Navigation\",\"volume\":\"26 1\",\"pages\":\"33 - 45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aon-2019-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aon-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

标准制导、导航和控制(GN&C)系统从导航系统中获取状态数据,并创建一个轨迹,使一些先验确定的成本函数最小化。这些成本函数通常是时间、金钱、重量或任何一般的物理上可实现的数量。以前的工作已经证明了使用风险作为唯一目标函数的有效性。然而,之前的工作使用泊松分布和历史估计来实现这一目标。本文提出了智能态势评估与避碰平台中包含的态势风险评估(SRA)方法。SRA方法使用数据聚类和模式识别来创建基于历史的制导概率估计。然后将它们用于数据驱动的动态模型中,以创建该情况的未来概率场。这个概率,连同其他智能体的目标和目的,然后用于创建航海环境中的最小风险制导解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Probability Fields for Risk Assessment and Guidance Solutions
Abstract Standard Guidance, Navigation, and Control (GN&C) systems take state data from a navigation system and create a trajectory that minimizes some a-priori determined cost function. These cost functions are typically time, money, weight, or any general physically realizable quantity. Previous work has been done to show the effectiveness of using risk as the sole objective function. However, this previous work used Poisson distributions and historical estimates to achieve this goal. In this paper we present the situation-risk assessment (SRA) method contained within the intelligent situation assessment and collision avoidance (iSC) platform. The SRA method uses data clustering, and pattern recognition to create a historically based estimate of guidance probabilities. These are then used in data driven, dynamic models to create the future probability fields of the situation. This probability, along with the other agent’s goals and objectives, are then used to create a minimum risk guidance solution in the nautical environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信