持续灾难中的人工智能团队:训练和反馈脚本如何揭示这是一种人机交流形式

Q1 Social Sciences
K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel
{"title":"持续灾难中的人工智能团队:训练和反馈脚本如何揭示这是一种人机交流形式","authors":"K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel","doi":"10.30658/hmc.6.5","DOIUrl":null,"url":null,"abstract":"Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-AI Teaming During an Ongoing Disaster: How Scripts Around Training and Feedback Reveal this is a Form of Human-Machine Communication\",\"authors\":\"K. Stephens, Anastazja Harris, Amanda Lee Hughes, Caroline Montagnolo, Karim Nader, S. A. Stevens, Tara Tasuji, Y. Xu, Hemant Purohit, C. Zobel\",\"doi\":\"10.30658/hmc.6.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30658/hmc.6.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30658/hmc.6.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在灾难期间,人类在从社交媒体中识别重要信息方面发挥着不可或缺的作用。虽然人类对社交媒体数据的注释以训练机器学习模型通常被视为人机交互,但本研究质疑了这种交互与人机通信之间的本体论边界。我们对参与者进行了多次采访,他们既标记数据以训练机器学习模型,也纠正了机器推断的数据标签。研究结果揭示了三个主题:用于管理决策的脚本、上下文脚本和围绕机器感知的脚本。人类在训练机器的过程中使用脚本——一种行为拟人化的形式——与机器建立社会关系。纠正机器推断的数据标签会改变这些脚本,并引发对谁是正确的自我怀疑,这证实了这是一种人机交流形式的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-AI Teaming During an Ongoing Disaster: How Scripts Around Training and Feedback Reveal this is a Form of Human-Machine Communication
Humans play an integral role in identifying important information from social media during disasters. While human annotation of social media data to train machine learning models is often viewed as human-computer interaction, this study interrogates the ontological boundary between such interaction and human-machine communication. We conducted multiple interviews with participants who both labeled data to train machine learning models and corrected machine-inferred data labels. Findings reveal three themes: scripts invoked to manage decision-making, contextual scripts, and scripts around perceptions of machines. Humans use scripts around training the machine—a form of behavioral anthropomorphism—to develop social relationships with them. Correcting machine-inferred data labels changes these scripts and evokes self-doubt around who is right, which substantiates the argument that this is a form of human-machine communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信