使用MECA认知架构的城市交通控制器

Q2 Psychology
Ricardo Gudwin , André Paraense , Suelen M. de Paula , Eduardo Fróes , Wandemberg Gibaut , Elisa Castro , Vera Figueiredo , Klaus Raizer
{"title":"使用MECA认知架构的城市交通控制器","authors":"Ricardo Gudwin ,&nbsp;André Paraense ,&nbsp;Suelen M. de Paula ,&nbsp;Eduardo Fróes ,&nbsp;Wandemberg Gibaut ,&nbsp;Elisa Castro ,&nbsp;Vera Figueiredo ,&nbsp;Klaus Raizer","doi":"10.1016/j.bica.2018.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a Cognitive Manager for urban traffic control, built using MECA, the Multipurpose Enhanced Cognitive Architecture, a cognitive architecture developed by our research group and implemented in the Java language. The Cognitive Manager controls a set of traffic lights in a junction of roads based on information collected from sensors installed on the many lanes feeding the junction. We tested our Junction Manager in 4 different test topologies using the SUMO traffic simulator, and with different traffic loads. The junction manager seeks to optimize the average waiting times for all the cars crossing the junction, while at the same time being able to provide preference to special cars (police cars or firefighters), called Smart Cars, and equipped with special devices that grant them special treatment during the phase allocation policies provided by the architecture. Simulation results provide evidence for an enhanced behavior while compared to fixed-time policies.</p></div>","PeriodicalId":48756,"journal":{"name":"Biologically Inspired Cognitive Architectures","volume":"26 ","pages":"Pages 41-54"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bica.2018.07.015","citationCount":"5","resultStr":"{\"title\":\"An urban traffic controller using the MECA cognitive architecture\",\"authors\":\"Ricardo Gudwin ,&nbsp;André Paraense ,&nbsp;Suelen M. de Paula ,&nbsp;Eduardo Fróes ,&nbsp;Wandemberg Gibaut ,&nbsp;Elisa Castro ,&nbsp;Vera Figueiredo ,&nbsp;Klaus Raizer\",\"doi\":\"10.1016/j.bica.2018.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a Cognitive Manager for urban traffic control, built using MECA, the Multipurpose Enhanced Cognitive Architecture, a cognitive architecture developed by our research group and implemented in the Java language. The Cognitive Manager controls a set of traffic lights in a junction of roads based on information collected from sensors installed on the many lanes feeding the junction. We tested our Junction Manager in 4 different test topologies using the SUMO traffic simulator, and with different traffic loads. The junction manager seeks to optimize the average waiting times for all the cars crossing the junction, while at the same time being able to provide preference to special cars (police cars or firefighters), called Smart Cars, and equipped with special devices that grant them special treatment during the phase allocation policies provided by the architecture. Simulation results provide evidence for an enhanced behavior while compared to fixed-time policies.</p></div>\",\"PeriodicalId\":48756,\"journal\":{\"name\":\"Biologically Inspired Cognitive Architectures\",\"volume\":\"26 \",\"pages\":\"Pages 41-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bica.2018.07.015\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologically Inspired Cognitive Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212683X18300859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologically Inspired Cognitive Architectures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212683X18300859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一个用于城市交通控制的认知管理器,使用MECA(多用途增强认知架构)构建,这是我们的研究小组开发的一种认知架构,用Java语言实现。认知管理器根据安装在通往路口的许多车道上的传感器收集的信息,控制路口的一组交通灯。我们使用SUMO流量模拟器在4种不同的测试拓扑中测试了我们的Junction Manager,并使用了不同的流量负载。路口管理器寻求优化所有穿过路口的车辆的平均等待时间,同时能够为特殊车辆(警车或消防员)提供优先权,称为智能汽车,并配备特殊设备,在架构提供的阶段分配政策中给予它们特殊待遇。与固定时间策略相比,仿真结果为增强的行为提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An urban traffic controller using the MECA cognitive architecture

In this paper, we present a Cognitive Manager for urban traffic control, built using MECA, the Multipurpose Enhanced Cognitive Architecture, a cognitive architecture developed by our research group and implemented in the Java language. The Cognitive Manager controls a set of traffic lights in a junction of roads based on information collected from sensors installed on the many lanes feeding the junction. We tested our Junction Manager in 4 different test topologies using the SUMO traffic simulator, and with different traffic loads. The junction manager seeks to optimize the average waiting times for all the cars crossing the junction, while at the same time being able to provide preference to special cars (police cars or firefighters), called Smart Cars, and equipped with special devices that grant them special treatment during the phase allocation policies provided by the architecture. Simulation results provide evidence for an enhanced behavior while compared to fixed-time policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologically Inspired Cognitive Architectures
Biologically Inspired Cognitive Architectures COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEN-NEUROSCIENCES
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Announcing the merge of Biologically Inspired Cognitive Architectures with Cognitive Systems Research. Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信