{"title":"自主机器人群集的深度强化学习策略","authors":"Fredy H. Martínez, Holman Montiel, Luis Wanumen","doi":"10.11591/ijece.v13i5.pp5707-5716","DOIUrl":null,"url":null,"abstract":"Social behaviors in animals such as bees, ants, and birds have shown high levels of intelligence from a multi-agent system perspective. They present viable solutions to real-world problems, particularly in navigating constrained environments with simple robotic platforms. Among these behaviors is swarm flocking, which has been extensively studied for this purpose. Flocking algorithms have been developed from basic behavioral rules, which often require parameter tuning for specific applications. However, the lack of a general formulation for tuning has made these strategies difficult to implement in various real conditions, and even to replicate laboratory behaviors. In this paper, we propose a flocking scheme for small autonomous robots that can self-learn in dynamic environments, derived from a deep reinforcement learning process. Our approach achieves flocking independently of population size and environmental characteristics, with minimal external intervention. Our multi-agent system model considers each agent’s action as a linear function dynamically adjusting the motion according to interactions with other agents and the environment. Our strategy is an important contribution toward real-world flocking implementation. We demonstrate that our approach allows for autonomous flocking in the system without requiring specific parameter tuning, making it ideal for applications where there is a need for simple robotic platforms to navigate in dynamic environments.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep reinforcement learning strategy for autonomous robot flocking\",\"authors\":\"Fredy H. Martínez, Holman Montiel, Luis Wanumen\",\"doi\":\"10.11591/ijece.v13i5.pp5707-5716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social behaviors in animals such as bees, ants, and birds have shown high levels of intelligence from a multi-agent system perspective. They present viable solutions to real-world problems, particularly in navigating constrained environments with simple robotic platforms. Among these behaviors is swarm flocking, which has been extensively studied for this purpose. Flocking algorithms have been developed from basic behavioral rules, which often require parameter tuning for specific applications. However, the lack of a general formulation for tuning has made these strategies difficult to implement in various real conditions, and even to replicate laboratory behaviors. In this paper, we propose a flocking scheme for small autonomous robots that can self-learn in dynamic environments, derived from a deep reinforcement learning process. Our approach achieves flocking independently of population size and environmental characteristics, with minimal external intervention. Our multi-agent system model considers each agent’s action as a linear function dynamically adjusting the motion according to interactions with other agents and the environment. Our strategy is an important contribution toward real-world flocking implementation. We demonstrate that our approach allows for autonomous flocking in the system without requiring specific parameter tuning, making it ideal for applications where there is a need for simple robotic platforms to navigate in dynamic environments.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5707-5716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5707-5716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A deep reinforcement learning strategy for autonomous robot flocking
Social behaviors in animals such as bees, ants, and birds have shown high levels of intelligence from a multi-agent system perspective. They present viable solutions to real-world problems, particularly in navigating constrained environments with simple robotic platforms. Among these behaviors is swarm flocking, which has been extensively studied for this purpose. Flocking algorithms have been developed from basic behavioral rules, which often require parameter tuning for specific applications. However, the lack of a general formulation for tuning has made these strategies difficult to implement in various real conditions, and even to replicate laboratory behaviors. In this paper, we propose a flocking scheme for small autonomous robots that can self-learn in dynamic environments, derived from a deep reinforcement learning process. Our approach achieves flocking independently of population size and environmental characteristics, with minimal external intervention. Our multi-agent system model considers each agent’s action as a linear function dynamically adjusting the motion according to interactions with other agents and the environment. Our strategy is an important contribution toward real-world flocking implementation. We demonstrate that our approach allows for autonomous flocking in the system without requiring specific parameter tuning, making it ideal for applications where there is a need for simple robotic platforms to navigate in dynamic environments.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]