基于统一和动态粒子系统多层次划分的医学图像数据集自适应网格划分

Q4 Agricultural and Biological Sciences
Zhong Chen, Zhiwei Hou, Quanquan Yang, Xiaobing Chen
{"title":"基于统一和动态粒子系统多层次划分的医学图像数据集自适应网格划分","authors":"Zhong Chen, Zhiwei Hou, Quanquan Yang, Xiaobing Chen","doi":"10.7546/IJBA.2018.22.3.229-238","DOIUrl":null,"url":null,"abstract":"Surface meshes extracted from sparse medical images contain surface artifacts, there will produce serious distortion and generate numerous narrow triangle meshes. In order to eliminate the impact of the above factors, this paper presents a novel method for generating smooth and adaptive meshes from medical image datasets. Firstly, extracting the stack of contours by means of image segmentation and translating the contours into point clouds. The improved Multi-level Partition of Unity (MPU) implicit functions are used to fit the point clouds for creating the implicit surface. Then, sampling implicit surface through dynamic particle systems based on Gaussian curvature, dense particles sampling in the high curvature region, sparse particles sampling in the low curvature region. Finally, generating triangle meshes based on particle distribution by using the Delaunay triangulation algorithm. Experimental results show that the proposed method can generate high-quality triangle meshes with distributed adaptively and have a nice gradation of triangle mesh density on the surface curvature.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Meshing Based on the Multi-level Partition of Unity and Dynamic Particle Systems for Medical Image Datasets\",\"authors\":\"Zhong Chen, Zhiwei Hou, Quanquan Yang, Xiaobing Chen\",\"doi\":\"10.7546/IJBA.2018.22.3.229-238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface meshes extracted from sparse medical images contain surface artifacts, there will produce serious distortion and generate numerous narrow triangle meshes. In order to eliminate the impact of the above factors, this paper presents a novel method for generating smooth and adaptive meshes from medical image datasets. Firstly, extracting the stack of contours by means of image segmentation and translating the contours into point clouds. The improved Multi-level Partition of Unity (MPU) implicit functions are used to fit the point clouds for creating the implicit surface. Then, sampling implicit surface through dynamic particle systems based on Gaussian curvature, dense particles sampling in the high curvature region, sparse particles sampling in the low curvature region. Finally, generating triangle meshes based on particle distribution by using the Delaunay triangulation algorithm. Experimental results show that the proposed method can generate high-quality triangle meshes with distributed adaptively and have a nice gradation of triangle mesh density on the surface curvature.\",\"PeriodicalId\":38867,\"journal\":{\"name\":\"International Journal Bioautomation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Bioautomation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/IJBA.2018.22.3.229-238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/IJBA.2018.22.3.229-238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

从稀疏医学图像中提取的表面网格含有表面伪影,会产生严重的失真,产生大量的窄三角形网格。为了消除上述因素的影响,本文提出了一种从医学图像数据集中生成平滑自适应网格的新方法。首先,通过图像分割的方法提取出一组轮廓,并将其转换为点云。使用改进的多级单位划分(MPU)隐式函数来拟合点云,以创建隐式曲面。然后,通过基于高斯曲率的动态粒子系统对隐式曲面进行采样,在高曲率区域进行密集粒子采样,在低曲率区域进行稀疏粒子采样。最后,利用Delaunay三角剖分算法生成基于粒子分布的三角形网格。实验结果表明,该方法能够自适应地生成高质量的分布三角形网格,并且三角形网格密度对曲面曲率具有良好的渐变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Meshing Based on the Multi-level Partition of Unity and Dynamic Particle Systems for Medical Image Datasets
Surface meshes extracted from sparse medical images contain surface artifacts, there will produce serious distortion and generate numerous narrow triangle meshes. In order to eliminate the impact of the above factors, this paper presents a novel method for generating smooth and adaptive meshes from medical image datasets. Firstly, extracting the stack of contours by means of image segmentation and translating the contours into point clouds. The improved Multi-level Partition of Unity (MPU) implicit functions are used to fit the point clouds for creating the implicit surface. Then, sampling implicit surface through dynamic particle systems based on Gaussian curvature, dense particles sampling in the high curvature region, sparse particles sampling in the low curvature region. Finally, generating triangle meshes based on particle distribution by using the Delaunay triangulation algorithm. Experimental results show that the proposed method can generate high-quality triangle meshes with distributed adaptively and have a nice gradation of triangle mesh density on the surface curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信