改进的一般超椭圆曲线除数算法

IF 0.4 Q4 MATHEMATICS, APPLIED
Sebastian Lindner, L. Imbert, M. Jacobson
{"title":"改进的一般超椭圆曲线除数算法","authors":"Sebastian Lindner, L. Imbert, M. Jacobson","doi":"10.1145/3457341.3457345","DOIUrl":null,"url":null,"abstract":"The divisor class group of a hyperelliptic curve defined over a finite field is a finite abelian group at the center of a number of important open questions in algebraic geometry, number theory and cryptography. Many of these problems lend themselves to numerical investigation, and as emphasized by Sutherland [14, 13], fast arithmetic in the divisor class group is crucial for their efficiency. Besides, implementations of these fundamental operations are at the core of the algebraic geometry packages of widely-used computer algebra systems such as Magma and Sage.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"95 - 99"},"PeriodicalIF":0.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3457341.3457345","citationCount":"0","resultStr":"{\"title\":\"Improved divisor arithmetic on generic hyperelliptic curves\",\"authors\":\"Sebastian Lindner, L. Imbert, M. Jacobson\",\"doi\":\"10.1145/3457341.3457345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The divisor class group of a hyperelliptic curve defined over a finite field is a finite abelian group at the center of a number of important open questions in algebraic geometry, number theory and cryptography. Many of these problems lend themselves to numerical investigation, and as emphasized by Sutherland [14, 13], fast arithmetic in the divisor class group is crucial for their efficiency. Besides, implementations of these fundamental operations are at the core of the algebraic geometry packages of widely-used computer algebra systems such as Magma and Sage.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"54 1\",\"pages\":\"95 - 99\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3457341.3457345\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457341.3457345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457341.3457345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在有限域上定义的超椭圆曲线的除数子群是代数几何、数论和密码学中许多重要开放问题的中心的有限阿贝尔群。这些问题中的许多都有助于数值研究,正如Sutherland[14,13]所强调的,除数类群中的快速算术对其效率至关重要。此外,这些基本运算的实现是广泛使用的计算机代数系统(如Magma和Sage)的代数几何包的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved divisor arithmetic on generic hyperelliptic curves
The divisor class group of a hyperelliptic curve defined over a finite field is a finite abelian group at the center of a number of important open questions in algebraic geometry, number theory and cryptography. Many of these problems lend themselves to numerical investigation, and as emphasized by Sutherland [14, 13], fast arithmetic in the divisor class group is crucial for their efficiency. Besides, implementations of these fundamental operations are at the core of the algebraic geometry packages of widely-used computer algebra systems such as Magma and Sage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信