小龙虾壳废物作为安全的生物吸附剂去除合成废水中的Cu2+和Pb2+

IF 1.2 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Wanyue Hu, Shuo Chen, Hong Jiang
{"title":"小龙虾壳废物作为安全的生物吸附剂去除合成废水中的Cu2+和Pb2+","authors":"Wanyue Hu, Shuo Chen, Hong Jiang","doi":"10.1063/1674-0068/cjcp2001011","DOIUrl":null,"url":null,"abstract":"Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants, especially, heavy metals. In this study, the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions, such as Cu2+, Zn2+, and Cr3+, in aqueous solution under different environmental conditions. The release concentrations of heavy metals were dependent on pH, ionic strength, and humic acid; and the maximum release concentrations of heavy metals were still lower than the national standard. Specifically, Cu2+ and Pb2+ removal by crayfish shell in synthetic wastewater was investigated. The removal process involved biosorption, precipitation, and complexation, and the results indicate that crayfish shell is an excellent biosorbent for Cu2+ and Pb2+ removal. The precipitation step is particularly dependent on Ca species, pH, and temperature. The maximum removal capacities of Pb2+ and Cu2+ were 676.20 and 119.98 mg/g, respectively. The related precipitates and the generated complex products include Cu2CO3(OH)2, Ca2CuO3, CuCO3, Pb2CO3(OH)2, CaPb3O4, and PbCO3.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater\",\"authors\":\"Wanyue Hu, Shuo Chen, Hong Jiang\",\"doi\":\"10.1063/1674-0068/cjcp2001011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants, especially, heavy metals. In this study, the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions, such as Cu2+, Zn2+, and Cr3+, in aqueous solution under different environmental conditions. The release concentrations of heavy metals were dependent on pH, ionic strength, and humic acid; and the maximum release concentrations of heavy metals were still lower than the national standard. Specifically, Cu2+ and Pb2+ removal by crayfish shell in synthetic wastewater was investigated. The removal process involved biosorption, precipitation, and complexation, and the results indicate that crayfish shell is an excellent biosorbent for Cu2+ and Pb2+ removal. The precipitation step is particularly dependent on Ca species, pH, and temperature. The maximum removal capacities of Pb2+ and Cu2+ were 676.20 and 119.98 mg/g, respectively. The related precipitates and the generated complex products include Cu2CO3(OH)2, Ca2CuO3, CuCO3, Pb2CO3(OH)2, CaPb3O4, and PbCO3.\",\"PeriodicalId\":10036,\"journal\":{\"name\":\"Chinese Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/1674-0068/cjcp2001011\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2001011","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

小龙虾壳是一种丰富的天然废物,也是一种潜在的污染物,特别是重金属的生物吸附剂。本研究首先通过不同环境条件下对水溶液中cu +、Zn2+、Cr3+等主要重金属离子的释放实验,评价了小龙虾壳作为生物吸附剂的安全性。重金属释放浓度与pH、离子强度和腐植酸有关;重金属的最大释放浓度仍低于国家标准。研究了小龙虾壳对合成废水中Cu2+和Pb2+的去除效果。实验结果表明,螯虾壳是一种去除Cu2+和Pb2+的良好生物吸附剂。沉淀步骤特别依赖于Ca的种类、pH值和温度。对Pb2+和Cu2+的最大去除率分别为676.20和119.98 mg/g。相应的沉淀和生成的络合产物包括Cu2CO3(OH)2、Ca2CuO3、CuCO3、Pb2CO3(OH)2、CaPb3O4和PbCO3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater
Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants, especially, heavy metals. In this study, the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions, such as Cu2+, Zn2+, and Cr3+, in aqueous solution under different environmental conditions. The release concentrations of heavy metals were dependent on pH, ionic strength, and humic acid; and the maximum release concentrations of heavy metals were still lower than the national standard. Specifically, Cu2+ and Pb2+ removal by crayfish shell in synthetic wastewater was investigated. The removal process involved biosorption, precipitation, and complexation, and the results indicate that crayfish shell is an excellent biosorbent for Cu2+ and Pb2+ removal. The precipitation step is particularly dependent on Ca species, pH, and temperature. The maximum removal capacities of Pb2+ and Cu2+ were 676.20 and 119.98 mg/g, respectively. The related precipitates and the generated complex products include Cu2CO3(OH)2, Ca2CuO3, CuCO3, Pb2CO3(OH)2, CaPb3O4, and PbCO3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Physics
Chinese Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
1.90
自引率
10.00%
发文量
2763
审稿时长
3 months
期刊介绍: Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following: Theoretical Methods, Algorithms, Statistical and Quantum Chemistry Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes Surfaces, Interfaces, Single Molecules, Materials and Nanosciences Polymers, Biopolymers, and Complex Systems Other related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信