一维(k,a)广义傅里叶核的乘积公式

IF 0.7 3区 数学 Q2 MATHEMATICS
B. Amri
{"title":"一维(k,a)广义傅里叶核的乘积公式","authors":"B. Amri","doi":"10.1080/10652469.2023.2221774","DOIUrl":null,"url":null,"abstract":"In this paper, a product formula for the one-dimensional -generalized Fourier kernel is given for , a>0 and , extending the special case of [Boubatra MA, Negzaoui S, Sifi M. A new product formula involving Bessel functions. Integral Transforms Spec Funct. 2022;33:247–263.] when , .","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"849 - 860"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Product formula for the one-dimensional (k,a)-generalized Fourier kernel\",\"authors\":\"B. Amri\",\"doi\":\"10.1080/10652469.2023.2221774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a product formula for the one-dimensional -generalized Fourier kernel is given for , a>0 and , extending the special case of [Boubatra MA, Negzaoui S, Sifi M. A new product formula involving Bessel functions. Integral Transforms Spec Funct. 2022;33:247–263.] when , .\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"849 - 860\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2023.2221774\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2023.2221774","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一维广义傅里叶核的积公式,并推广了[Boubatra MA, Negzaoui S, Sifi m]的特殊情况,得到了一个涉及贝塞尔函数的新的积公式。积分变换规范函数。2022;33:247-263。当,。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Product formula for the one-dimensional (k,a)-generalized Fourier kernel
In this paper, a product formula for the one-dimensional -generalized Fourier kernel is given for , a>0 and , extending the special case of [Boubatra MA, Negzaoui S, Sifi M. A new product formula involving Bessel functions. Integral Transforms Spec Funct. 2022;33:247–263.] when , .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信