{"title":"另一种估计对数正态均值的方法","authors":"Yeil Kwon","doi":"10.29220/csam.2021.28.4.351","DOIUrl":null,"url":null,"abstract":"For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen’s estimator (Shen et al. , 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ 2 . The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen’s estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen’s estimator when σ 2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ 2 values.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternative method for estimating lognormal means\",\"authors\":\"Yeil Kwon\",\"doi\":\"10.29220/csam.2021.28.4.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen’s estimator (Shen et al. , 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ 2 . The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen’s estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen’s estimator when σ 2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ 2 values.\",\"PeriodicalId\":44931,\"journal\":{\"name\":\"Communications for Statistical Applications and Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications for Statistical Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29220/csam.2021.28.4.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2021.28.4.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
对于具有正偏斜数据的概率模型,对数正态分布是起关键作用的关键分布之一。对数正态模型可以在医学、工程和金融等各个领域找到。在本文中,我们提出了一种新的对数正态均值估计器,并描述了该估计器与Shen估计器(Shen et al., 2006)相比的相对均方误差(RMSE)的性能,Shen估计器被认为是现有方法中最好的估计器。所提出的估计器包括一个调优参数。通过寻找最优的调谐参数值,我们可以提高该估计器在典型σ 2范围内的平均性能。所提出的估计器的偏差减少倾向于超过增加的方差,并且它导致比Shen估计器更小的RMSE。数值研究表明,该估计方法在σ 2较小时具有与Shen估计方法相当的性能,在中等和较大σ 2值下均能显著降低RMSE。
An alternative method for estimating lognormal means
For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen’s estimator (Shen et al. , 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ 2 . The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen’s estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen’s estimator when σ 2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ 2 values.
期刊介绍:
Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.