旗子品种的上同环与Gelfand-Zetlin环的Chow上同环

IF 0.6 2区 数学 Q3 MATHEMATICS
Kiumars Kaveh, Elise Villella
{"title":"旗子品种的上同环与Gelfand-Zetlin环的Chow上同环","authors":"Kiumars Kaveh, Elise Villella","doi":"10.4171/jca/56","DOIUrl":null,"url":null,"abstract":"We compare the cohomology ring of the flag variety $FL_n$ and the Chow cohomology ring of the Gelfand-Zetlin toric variety $X_{GZ}$. We show that $H^*(FL_n, \\mathbb{Q})$ is the Gorenstein quotient of the subalgebra $L$ of $A^*(X_{GZ}, \\mathbb{Q})$ generated by degree $1$ elements. We compute these algebras for $n=3$ to see that, in general, the subalgebra $L$ does not have Poincare duality.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cohomology ring of the flag variety vs Chow cohomology ring of the Gelfand–Zetlin toric variety\",\"authors\":\"Kiumars Kaveh, Elise Villella\",\"doi\":\"10.4171/jca/56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the cohomology ring of the flag variety $FL_n$ and the Chow cohomology ring of the Gelfand-Zetlin toric variety $X_{GZ}$. We show that $H^*(FL_n, \\\\mathbb{Q})$ is the Gorenstein quotient of the subalgebra $L$ of $A^*(X_{GZ}, \\\\mathbb{Q})$ generated by degree $1$ elements. We compute these algebras for $n=3$ to see that, in general, the subalgebra $L$ does not have Poincare duality.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/56\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/56","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们比较了flag变种$FL_n$的上同调环和Gelfand Zetlin复曲面变种$X_{GZ}$的Chow上同调圈。我们证明了$H^*(FL_n,\mathbb{Q})$是$A^*(X_{GZ},\math bb{Q})的子代数$L$的Gorenstein商。我们计算$n=3$的这些代数,可以看出,一般来说,子代数$L$不具有庞加莱对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology ring of the flag variety vs Chow cohomology ring of the Gelfand–Zetlin toric variety
We compare the cohomology ring of the flag variety $FL_n$ and the Chow cohomology ring of the Gelfand-Zetlin toric variety $X_{GZ}$. We show that $H^*(FL_n, \mathbb{Q})$ is the Gorenstein quotient of the subalgebra $L$ of $A^*(X_{GZ}, \mathbb{Q})$ generated by degree $1$ elements. We compute these algebras for $n=3$ to see that, in general, the subalgebra $L$ does not have Poincare duality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信