{"title":"基于差分流形的攻击伤害计算新方法","authors":"Zhen Liu, Changzhen Hu, Chun Shan, Zheng Yan","doi":"10.1109/TDSC.2022.3214809","DOIUrl":null,"url":null,"abstract":"Calculating system damage caused by a cyberattack can help in understanding the impact and destructiveness of the attack to discover system security weaknesses. Thus, system damage calculations is important in the process of network offense–defense confrontation. However, there is little research on attack damage calculation. Current methods are unable to quantitatively evaluate the impact of an attack in a rational and accurate way. The lack of theoretical support and the complexity of both cyber systems and attacks bring tremendous challenges to attack damage calculations. In this paper, we propose a novel method called ADCaDeM to enable quantitative attack damage calculation based on a differential manifold. The damage is a negative utility produced by attack behaviors on an attacked object, which can be characterized and expressed by its attributes. We formally map the attack behaviors into a space constructed by the attributes of the attacked object in a mathematical way. Then, we propose an algorithm to construct these attributes as a differential manifold to represent their algebraic topological structure. According to the theory of tangent vectors and geodesics on the differential manifold, we can calculate attack behavioral utility in a physical way, such as computing the work done in physics. Regardless of the complexity of the dimensional structure of the attributes, the differential manifold structure can reasonably represent and calculate the damage caused by an attack. We simulate a data theft attack and a web penetration attack to test the performance of ADCaDeM and compare it with existing methods. Our experimental results illustrate ADCaDeM's advance in terms of rationality for calculating the damage caused by some typical cyberattacks.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4070-4084"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ADCaDeM: A Novel Method of Calculating Attack Damage Based on Differential Manifolds\",\"authors\":\"Zhen Liu, Changzhen Hu, Chun Shan, Zheng Yan\",\"doi\":\"10.1109/TDSC.2022.3214809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating system damage caused by a cyberattack can help in understanding the impact and destructiveness of the attack to discover system security weaknesses. Thus, system damage calculations is important in the process of network offense–defense confrontation. However, there is little research on attack damage calculation. Current methods are unable to quantitatively evaluate the impact of an attack in a rational and accurate way. The lack of theoretical support and the complexity of both cyber systems and attacks bring tremendous challenges to attack damage calculations. In this paper, we propose a novel method called ADCaDeM to enable quantitative attack damage calculation based on a differential manifold. The damage is a negative utility produced by attack behaviors on an attacked object, which can be characterized and expressed by its attributes. We formally map the attack behaviors into a space constructed by the attributes of the attacked object in a mathematical way. Then, we propose an algorithm to construct these attributes as a differential manifold to represent their algebraic topological structure. According to the theory of tangent vectors and geodesics on the differential manifold, we can calculate attack behavioral utility in a physical way, such as computing the work done in physics. Regardless of the complexity of the dimensional structure of the attributes, the differential manifold structure can reasonably represent and calculate the damage caused by an attack. We simulate a data theft attack and a web penetration attack to test the performance of ADCaDeM and compare it with existing methods. Our experimental results illustrate ADCaDeM's advance in terms of rationality for calculating the damage caused by some typical cyberattacks.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"4070-4084\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3214809\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3214809","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ADCaDeM: A Novel Method of Calculating Attack Damage Based on Differential Manifolds
Calculating system damage caused by a cyberattack can help in understanding the impact and destructiveness of the attack to discover system security weaknesses. Thus, system damage calculations is important in the process of network offense–defense confrontation. However, there is little research on attack damage calculation. Current methods are unable to quantitatively evaluate the impact of an attack in a rational and accurate way. The lack of theoretical support and the complexity of both cyber systems and attacks bring tremendous challenges to attack damage calculations. In this paper, we propose a novel method called ADCaDeM to enable quantitative attack damage calculation based on a differential manifold. The damage is a negative utility produced by attack behaviors on an attacked object, which can be characterized and expressed by its attributes. We formally map the attack behaviors into a space constructed by the attributes of the attacked object in a mathematical way. Then, we propose an algorithm to construct these attributes as a differential manifold to represent their algebraic topological structure. According to the theory of tangent vectors and geodesics on the differential manifold, we can calculate attack behavioral utility in a physical way, such as computing the work done in physics. Regardless of the complexity of the dimensional structure of the attributes, the differential manifold structure can reasonably represent and calculate the damage caused by an attack. We simulate a data theft attack and a web penetration attack to test the performance of ADCaDeM and compare it with existing methods. Our experimental results illustrate ADCaDeM's advance in terms of rationality for calculating the damage caused by some typical cyberattacks.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.