相对论多重组态计算中原子能的精细调谐

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-04-08 DOI:10.3390/atoms11040070
Yanting Li, G. Gaigalas, Wenxian Li, Chongyang Chen, P. Jönsson
{"title":"相对论多重组态计算中原子能的精细调谐","authors":"Yanting Li, G. Gaigalas, Wenxian Li, Chongyang Chen, P. Jönsson","doi":"10.3390/atoms11040070","DOIUrl":null,"url":null,"abstract":"Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S0−2s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-Tuning of Atomic Energies in Relativistic Multiconfiguration Calculations\",\"authors\":\"Yanting Li, G. Gaigalas, Wenxian Li, Chongyang Chen, P. Jönsson\",\"doi\":\"10.3390/atoms11040070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S0−2s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11040070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

从头算有时不能以足够高的精度再现实验观察到的能量分离。哈密顿矩阵对角元素的微调是一个过程,旨在确保混合态的计算能量分离与实验一致。与从头计算相比,该过程给出了更精确的混合测量。微调要求哈密顿矩阵是对角占优的,这通常不是基于jj耦合配置状态函数的计算的情况。我们证明了这个问题可以通过将jj-耦合中的哈密顿量转换为适用微调的lsj -耦合中的哈密顿量的方法来规避。然后将微调后的矩阵转换回jj耦合中的哈密顿矩阵。描述了该方法在广义相对论原子结构包中的实现,并报告了验证程序操作的测试运行。将新方法应用于C III中2s21S0−2s2p1,3P1跃迁的计算,以及B I中2s2p22S1/2摄动器进入2s2ns2S1/2系列的Rydberg跃迁的计算。与从头计算相比,发现了改进的收敛模式和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Tuning of Atomic Energies in Relativistic Multiconfiguration Calculations
Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S0−2s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信