{"title":"基于GPS/INS组合的混合定位技术在无人驾驶汽车导航中的应用","authors":"A. N Ouda, A. Mohamed","doi":"10.3849/aimt.01498","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid positioning technique combining both loosely and tightly coupled Kalman Filter (KF) algorithms for an autonomous multi-wheeled combat vehicle. The developed algorithm is able to provide accurate positioning information even if number of visible satellites falls below the minimum due to the harsh operation environments. Two modes of operation were considered which automatically switch between them according to the number of visible satellites in order to correct the INS drift. Furthermore, a performance comparison between fifteen and eighteen KFs states is conducted. A simulation of the developed algorithm is performed, using a SATNAV navigation toolbox and the collected data from real sensors mounted on a ground vehicle. The experimental results validated effectiveness of the developed algorithm.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Positioning Technique Based Integration of GPS/INS for an Autonomous Vehicle Navigation\",\"authors\":\"A. N Ouda, A. Mohamed\",\"doi\":\"10.3849/aimt.01498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid positioning technique combining both loosely and tightly coupled Kalman Filter (KF) algorithms for an autonomous multi-wheeled combat vehicle. The developed algorithm is able to provide accurate positioning information even if number of visible satellites falls below the minimum due to the harsh operation environments. Two modes of operation were considered which automatically switch between them according to the number of visible satellites in order to correct the INS drift. Furthermore, a performance comparison between fifteen and eighteen KFs states is conducted. A simulation of the developed algorithm is performed, using a SATNAV navigation toolbox and the collected data from real sensors mounted on a ground vehicle. The experimental results validated effectiveness of the developed algorithm.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/aimt.01498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.01498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Hybrid Positioning Technique Based Integration of GPS/INS for an Autonomous Vehicle Navigation
This paper presents a hybrid positioning technique combining both loosely and tightly coupled Kalman Filter (KF) algorithms for an autonomous multi-wheeled combat vehicle. The developed algorithm is able to provide accurate positioning information even if number of visible satellites falls below the minimum due to the harsh operation environments. Two modes of operation were considered which automatically switch between them according to the number of visible satellites in order to correct the INS drift. Furthermore, a performance comparison between fifteen and eighteen KFs states is conducted. A simulation of the developed algorithm is performed, using a SATNAV navigation toolbox and the collected data from real sensors mounted on a ground vehicle. The experimental results validated effectiveness of the developed algorithm.