仿射几乎正根模型

IF 0.6 2区 数学 Q3 MATHEMATICS
Nathan Reading, Salvatore Stella
{"title":"仿射几乎正根模型","authors":"Nathan Reading, Salvatore Stella","doi":"10.4171/jca/37","DOIUrl":null,"url":null,"abstract":"We generalize the almost positive roots model for cluster algebras from finite type to a uniform finite/affine type model. We define the almost positive Schur roots $\\Phi_c$ and a compatibility degree, given by a formula that is new even in finite type. The clusters define a complete fan $\\operatorname{Fan}_c(\\Phi)$. Equivalently, every vector has a unique cluster expansion. We give a piecewise linear isomorphism from the subfan of $\\operatorname{Fan}_c(\\Phi)$ induced by real roots to the ${\\mathbf g}$-vector fan of the associated cluster algebra. We show that $\\Phi_c$ is the set of denominator vectors of the associated acyclic cluster algebra and conjecture that the compatibility degree also describes denominator vectors for non-acyclic initial seeds. We extend results on exchangeability of roots to the affine case.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jca/37","citationCount":"10","resultStr":"{\"title\":\"An affine almost positive roots model\",\"authors\":\"Nathan Reading, Salvatore Stella\",\"doi\":\"10.4171/jca/37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the almost positive roots model for cluster algebras from finite type to a uniform finite/affine type model. We define the almost positive Schur roots $\\\\Phi_c$ and a compatibility degree, given by a formula that is new even in finite type. The clusters define a complete fan $\\\\operatorname{Fan}_c(\\\\Phi)$. Equivalently, every vector has a unique cluster expansion. We give a piecewise linear isomorphism from the subfan of $\\\\operatorname{Fan}_c(\\\\Phi)$ induced by real roots to the ${\\\\mathbf g}$-vector fan of the associated cluster algebra. We show that $\\\\Phi_c$ is the set of denominator vectors of the associated acyclic cluster algebra and conjecture that the compatibility degree also describes denominator vectors for non-acyclic initial seeds. We extend results on exchangeability of roots to the affine case.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/jca/37\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

我们将簇代数的几乎正根模型从有限型推广到一致的有限/仿射型模型。我们定义了几乎正的Schur根$\Phi_c$和相容度,由一个即使在有限类型中也是新的公式给出。集群定义了一个完整的风扇$\运算符名称{Fan}_c(\Phi)$。等价地,每个向量都有一个唯一的簇扩展。我们从$\算子名称的子项给出了一个分段线性同构{Fan}_c(\Phi)$由实根诱导到关联簇代数的${\mathbf g}$向量扇。我们证明了$\Phi_c$是关联的非循环簇代数的分母向量集,并推测相容度也描述了非循环初始种子的分母向量。我们将关于根的可交换性的结果推广到仿射情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An affine almost positive roots model
We generalize the almost positive roots model for cluster algebras from finite type to a uniform finite/affine type model. We define the almost positive Schur roots $\Phi_c$ and a compatibility degree, given by a formula that is new even in finite type. The clusters define a complete fan $\operatorname{Fan}_c(\Phi)$. Equivalently, every vector has a unique cluster expansion. We give a piecewise linear isomorphism from the subfan of $\operatorname{Fan}_c(\Phi)$ induced by real roots to the ${\mathbf g}$-vector fan of the associated cluster algebra. We show that $\Phi_c$ is the set of denominator vectors of the associated acyclic cluster algebra and conjecture that the compatibility degree also describes denominator vectors for non-acyclic initial seeds. We extend results on exchangeability of roots to the affine case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信