基于变压器的集成深度学习模型用于基于脑电图的情感识别

Xiaopeng Si, Dong Huang, Yulin Sun, Shudi Huang, He Huang, Dong Ming
{"title":"基于变压器的集成深度学习模型用于基于脑电图的情感识别","authors":"Xiaopeng Si, Dong Huang, Yulin Sun, Shudi Huang, He Huang, Dong Ming","doi":"10.26599/BSA.2023.9050016","DOIUrl":null,"url":null,"abstract":"Emotion recognition is one of the most important research directions in the field of brain–computer interface (BCI). However, to conduct electroencephalogram (EEG)-based emotion recognition, there exist difficulties regarding EEG signal processing; moreover, the performance of classification models in this regard is restricted. To counter these issues, the 2022 World Robot Contest successfully held an affective BCI competition, thus promoting the innovation of EEG-based emotion recognition. In this paper, we propose the Transformer-based ensemble (TBEM) deep learning model. TBEM comprises two models: a pure convolutional neural network (CNN) model and a cascaded CNN-Transformer hybrid model. The proposed model won the abovementioned affective BCI competition’s final championship in the 2022 World Robot Contest, demonstrating the effectiveness of the proposed TBEM deep learning model for EEG-based emotion recognition.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-based ensemble deep learning model for EEG-based emotion recognition\",\"authors\":\"Xiaopeng Si, Dong Huang, Yulin Sun, Shudi Huang, He Huang, Dong Ming\",\"doi\":\"10.26599/BSA.2023.9050016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition is one of the most important research directions in the field of brain–computer interface (BCI). However, to conduct electroencephalogram (EEG)-based emotion recognition, there exist difficulties regarding EEG signal processing; moreover, the performance of classification models in this regard is restricted. To counter these issues, the 2022 World Robot Contest successfully held an affective BCI competition, thus promoting the innovation of EEG-based emotion recognition. In this paper, we propose the Transformer-based ensemble (TBEM) deep learning model. TBEM comprises two models: a pure convolutional neural network (CNN) model and a cascaded CNN-Transformer hybrid model. The proposed model won the abovementioned affective BCI competition’s final championship in the 2022 World Robot Contest, demonstrating the effectiveness of the proposed TBEM deep learning model for EEG-based emotion recognition.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2023.9050016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2023.9050016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪识别是脑机接口领域最重要的研究方向之一。然而,要进行基于脑电图的情绪识别,在脑电信号处理方面存在困难;此外,分类模型在这方面的性能受到限制。为了应对这些问题,2022年世界机器人大赛成功举办了情感脑机接口比赛,从而推动了基于脑电的情感识别的创新。在本文中,我们提出了基于Transformer的集成(TBEM)深度学习模型。TBEM包括两个模型:纯卷积神经网络(CNN)模型和级联CNNTransformer混合模型。所提出的模型在2022年世界机器人大赛中赢得了上述情感脑机接口竞赛的最终冠军,证明了所提出的TBEM深度学习模型在基于脑电的情感识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based ensemble deep learning model for EEG-based emotion recognition
Emotion recognition is one of the most important research directions in the field of brain–computer interface (BCI). However, to conduct electroencephalogram (EEG)-based emotion recognition, there exist difficulties regarding EEG signal processing; moreover, the performance of classification models in this regard is restricted. To counter these issues, the 2022 World Robot Contest successfully held an affective BCI competition, thus promoting the innovation of EEG-based emotion recognition. In this paper, we propose the Transformer-based ensemble (TBEM) deep learning model. TBEM comprises two models: a pure convolutional neural network (CNN) model and a cascaded CNN-Transformer hybrid model. The proposed model won the abovementioned affective BCI competition’s final championship in the 2022 World Robot Contest, demonstrating the effectiveness of the proposed TBEM deep learning model for EEG-based emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信