物理非线性板在动剪切荷载作用下的膨胀

Sergey Ivanov
{"title":"物理非线性板在动剪切荷载作用下的膨胀","authors":"Sergey Ivanov","doi":"10.22363/1815-5235-2022-18-1-3-10","DOIUrl":null,"url":null,"abstract":"The study of the stability of plates under shear under the action of dynamic loads is one of the important problems of structural mechanics. The plates are widely used in construction, mechanical engineering, shipbuilding and aircraft building. The paper presents a method for calculating plates for shear buckling, taking into account the physical nonlinearity of the material. A plate is considered under the action of a shearing dynamic load along the edges. The calculation is based on the Kirchhoff - Love hypotheses and the hypothesis of a non-linear elastic body. The plate material is assumed to be physically nonlinear. The deformation diagram is approximated as a cubic polynomial. The deflection of the plate points is determined in the form of Vlasov - Kantorovich expansions. Basic non-linear differential equations are derived using the energy method. Lagrange’s equations are used to obtain the resolving equations for plate buckling. On the basis of the developed technique, a calculation was made for the stability of a physically nonlinear square plate under the action of a shear dynamic load. The edges of the plate are hinged. The finite system of nonlinear differential equations is integrated numerically by the Runge - Kutta method. Based on the results of calculations, plots of the dependence of the relative value of the deflection of the central point of the plate on the dynamic coefficient Kd (with and without taking into account the physical nonlinearity of the material) are plotted. The influence of the degree of physical nonlinearity of the material, the parameter of the rate of change of the shear load on the criteria for the dynamic stability of a square plate is studied.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bulking of physically nonlinear plates under the action of dynamic shearing loads\",\"authors\":\"Sergey Ivanov\",\"doi\":\"10.22363/1815-5235-2022-18-1-3-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the stability of plates under shear under the action of dynamic loads is one of the important problems of structural mechanics. The plates are widely used in construction, mechanical engineering, shipbuilding and aircraft building. The paper presents a method for calculating plates for shear buckling, taking into account the physical nonlinearity of the material. A plate is considered under the action of a shearing dynamic load along the edges. The calculation is based on the Kirchhoff - Love hypotheses and the hypothesis of a non-linear elastic body. The plate material is assumed to be physically nonlinear. The deformation diagram is approximated as a cubic polynomial. The deflection of the plate points is determined in the form of Vlasov - Kantorovich expansions. Basic non-linear differential equations are derived using the energy method. Lagrange’s equations are used to obtain the resolving equations for plate buckling. On the basis of the developed technique, a calculation was made for the stability of a physically nonlinear square plate under the action of a shear dynamic load. The edges of the plate are hinged. The finite system of nonlinear differential equations is integrated numerically by the Runge - Kutta method. Based on the results of calculations, plots of the dependence of the relative value of the deflection of the central point of the plate on the dynamic coefficient Kd (with and without taking into account the physical nonlinearity of the material) are plotted. The influence of the degree of physical nonlinearity of the material, the parameter of the rate of change of the shear load on the criteria for the dynamic stability of a square plate is studied.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-1-3-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-1-3-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

板在动载荷作用下的剪切稳定性研究是结构力学的重要问题之一。该板材广泛应用于建筑、机械工程、造船和飞机制造。本文提出了一种考虑材料物理非线性的剪切屈曲板的计算方法。考虑了在沿边缘的剪切动载荷作用下的板。该计算基于基尔霍夫-洛夫假设和非线性弹性体假设。假定板材在物理上是非线性的。变形图近似为三次多项式。板点的偏转是以弗拉索夫-坎托罗维奇展开的形式确定的。利用能量法导出了基本的非线性微分方程。利用拉格朗日方程得到了板屈曲的解析方程。在此基础上,对物理非线性方板在剪切动载荷作用下的稳定性进行了计算。这块板的边缘是铰接的。采用龙格-库塔方法对非线性微分方程组进行了数值积分。根据计算结果,绘制了板中心点的挠度相对值与动力系数Kd的关系图(考虑和不考虑材料的物理非线性)。研究了材料的物理非线性程度、剪切载荷变化率参数对方形板动力稳定性判据的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bulking of physically nonlinear plates under the action of dynamic shearing loads
The study of the stability of plates under shear under the action of dynamic loads is one of the important problems of structural mechanics. The plates are widely used in construction, mechanical engineering, shipbuilding and aircraft building. The paper presents a method for calculating plates for shear buckling, taking into account the physical nonlinearity of the material. A plate is considered under the action of a shearing dynamic load along the edges. The calculation is based on the Kirchhoff - Love hypotheses and the hypothesis of a non-linear elastic body. The plate material is assumed to be physically nonlinear. The deformation diagram is approximated as a cubic polynomial. The deflection of the plate points is determined in the form of Vlasov - Kantorovich expansions. Basic non-linear differential equations are derived using the energy method. Lagrange’s equations are used to obtain the resolving equations for plate buckling. On the basis of the developed technique, a calculation was made for the stability of a physically nonlinear square plate under the action of a shear dynamic load. The edges of the plate are hinged. The finite system of nonlinear differential equations is integrated numerically by the Runge - Kutta method. Based on the results of calculations, plots of the dependence of the relative value of the deflection of the central point of the plate on the dynamic coefficient Kd (with and without taking into account the physical nonlinearity of the material) are plotted. The influence of the degree of physical nonlinearity of the material, the parameter of the rate of change of the shear load on the criteria for the dynamic stability of a square plate is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信