使用多目标进化优化在集水区范围内探索生物滞留系统的接近最佳位置

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES
Abtin Shahrokh Hamedani, C. D. do Lago, M. Giacomoni
{"title":"使用多目标进化优化在集水区范围内探索生物滞留系统的接近最佳位置","authors":"Abtin Shahrokh Hamedani, C. D. do Lago, M. Giacomoni","doi":"10.1080/1573062X.2023.2211557","DOIUrl":null,"url":null,"abstract":"ABSTRACT Low impact developments (LIDs) are control measures to restore the hydrologic regime and enhance stormwater quality. Due to LID’s expensive capital and maintenance cost, the placement of LID controls in a watershed is an important planning task and still an open question in the specialized literature. This study proposes a simulation-optimization approach to place bioretention systems within a watershed to optimize their effectiveness. The Stormwater Management Model (SWMM) and the Non-dominated Sorting Genetic Algorithm III (NSGAIII) were coupled to identify the near-optimal locations of bioretentions for near-optimal quality and quantity controls, considering runoff volume, peak flow, total suspended solids, total nitrogen, and cost. Trade-offs were identified between cost versus other objective functions. The results suggest no specific spatial preference in placement of bioretentions under different rainfall regimes in watershed scale. However, in subcatchment scale, the near-optimal placement under single storm events is either maximum or none, while distributed under continuous simulation.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"813 - 830"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization\",\"authors\":\"Abtin Shahrokh Hamedani, C. D. do Lago, M. Giacomoni\",\"doi\":\"10.1080/1573062X.2023.2211557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Low impact developments (LIDs) are control measures to restore the hydrologic regime and enhance stormwater quality. Due to LID’s expensive capital and maintenance cost, the placement of LID controls in a watershed is an important planning task and still an open question in the specialized literature. This study proposes a simulation-optimization approach to place bioretention systems within a watershed to optimize their effectiveness. The Stormwater Management Model (SWMM) and the Non-dominated Sorting Genetic Algorithm III (NSGAIII) were coupled to identify the near-optimal locations of bioretentions for near-optimal quality and quantity controls, considering runoff volume, peak flow, total suspended solids, total nitrogen, and cost. Trade-offs were identified between cost versus other objective functions. The results suggest no specific spatial preference in placement of bioretentions under different rainfall regimes in watershed scale. However, in subcatchment scale, the near-optimal placement under single storm events is either maximum or none, while distributed under continuous simulation.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"813 - 830\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2211557\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2211557","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要低影响开发(LID)是恢复水文状况和提高雨水质量的控制措施。由于LID昂贵的资本和维护成本,在流域中放置LID控制是一项重要的规划任务,在专业文献中仍然是一个悬而未决的问题。本研究提出了一种模拟优化方法,将生物滞留系统放置在流域内,以优化其有效性。结合雨水管理模型(SWMM)和非支配排序遗传算法III(NSGAII),在考虑径流量、峰值流量、总悬浮固体、总氮和成本的情况下,确定生物滞留的接近最优位置,以实现接近最优的质量和数量控制。确定了成本与其他目标函数之间的权衡。研究结果表明,在流域尺度的不同降雨条件下,生物滞留区的布局没有特定的空间偏好。然而,在子流域尺度上,在连续模拟下,单次风暴事件下的近最优位置要么最大,要么没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization
ABSTRACT Low impact developments (LIDs) are control measures to restore the hydrologic regime and enhance stormwater quality. Due to LID’s expensive capital and maintenance cost, the placement of LID controls in a watershed is an important planning task and still an open question in the specialized literature. This study proposes a simulation-optimization approach to place bioretention systems within a watershed to optimize their effectiveness. The Stormwater Management Model (SWMM) and the Non-dominated Sorting Genetic Algorithm III (NSGAIII) were coupled to identify the near-optimal locations of bioretentions for near-optimal quality and quantity controls, considering runoff volume, peak flow, total suspended solids, total nitrogen, and cost. Trade-offs were identified between cost versus other objective functions. The results suggest no specific spatial preference in placement of bioretentions under different rainfall regimes in watershed scale. However, in subcatchment scale, the near-optimal placement under single storm events is either maximum or none, while distributed under continuous simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信