审查土壤肥力综合管理对减缓气候变化和农业可持续性的贡献

Q2 Environmental Science
Tesfaye Bayu
{"title":"审查土壤肥力综合管理对减缓气候变化和农业可持续性的贡献","authors":"Tesfaye Bayu","doi":"10.1080/23311843.2020.1823631","DOIUrl":null,"url":null,"abstract":"Abstract Agriculture is one of the largest contributors to greenhouse gas emissions, derived from livestock farming (enteric fermentation and manure management) and emissions from agricultural soils (i.e. application of excessive N fertilizers and decomposition of organic material). The review covers contribution of integrated fertility management to mitigate climate change and sustain agricultural production. Combined application of farmyard manure and mineral fertilizer is very economical than sole NP application in maintaining sustainable agricultural productivity. Maximum sustained crop production (2.88 t/ha) was obtained when 69 kg of NP fertilizer was applied with 10 t/ha farmyard manure. Combined application of tie ridge, farmyard manure and NP fertilizer contribute for agricultural sustainability. Applying integrated soil fertility increase total nitrogen and available phosphorus in the soil for agricultural sustainability. The highest carbon (12 mg/kg) was sequestered when farmyard manure was applied with NP fertilizer on maize and wheat cropped alfisoils. Application of integrated fertility management reduces N2O emissions by increase nitrogen-use efficiency. Application of animal manure and NPK fertilizer reduce CH4 into the atmosphere contributing for climate change mitigation. Integrated soil fertility management improves soil fertility contributing for agricultural sustainability. Crop yield was improved by application of integrated fertility management which sustains agriculture. Integrated soil fertility management was on option for climate change mitigation.","PeriodicalId":45615,"journal":{"name":"Cogent Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311843.2020.1823631","citationCount":"23","resultStr":"{\"title\":\"Review on contribution of integrated soil fertility management for climate change mitigation and agricultural sustainability\",\"authors\":\"Tesfaye Bayu\",\"doi\":\"10.1080/23311843.2020.1823631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Agriculture is one of the largest contributors to greenhouse gas emissions, derived from livestock farming (enteric fermentation and manure management) and emissions from agricultural soils (i.e. application of excessive N fertilizers and decomposition of organic material). The review covers contribution of integrated fertility management to mitigate climate change and sustain agricultural production. Combined application of farmyard manure and mineral fertilizer is very economical than sole NP application in maintaining sustainable agricultural productivity. Maximum sustained crop production (2.88 t/ha) was obtained when 69 kg of NP fertilizer was applied with 10 t/ha farmyard manure. Combined application of tie ridge, farmyard manure and NP fertilizer contribute for agricultural sustainability. Applying integrated soil fertility increase total nitrogen and available phosphorus in the soil for agricultural sustainability. The highest carbon (12 mg/kg) was sequestered when farmyard manure was applied with NP fertilizer on maize and wheat cropped alfisoils. Application of integrated fertility management reduces N2O emissions by increase nitrogen-use efficiency. Application of animal manure and NPK fertilizer reduce CH4 into the atmosphere contributing for climate change mitigation. Integrated soil fertility management improves soil fertility contributing for agricultural sustainability. Crop yield was improved by application of integrated fertility management which sustains agriculture. Integrated soil fertility management was on option for climate change mitigation.\",\"PeriodicalId\":45615,\"journal\":{\"name\":\"Cogent Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311843.2020.1823631\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311843.2020.1823631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311843.2020.1823631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 23

摘要

摘要农业是温室气体排放的最大贡献者之一,温室气体排放源于畜牧业(肠道发酵和粪肥管理)和农业土壤排放(即施用过量氮肥和有机物质分解)。审查涵盖了综合生育管理对缓解气候变化和维持农业生产的贡献。在保持可持续农业生产力方面,农家肥和矿物肥料的联合施用比单独施用NP非常经济。当施用69公斤NP肥料和10吨/公顷农家肥时,获得了最大的持续作物产量(2.88吨/公顷)。田埂、农家肥和NP肥的联合施用有助于农业的可持续发展。施用综合土壤肥力可以增加土壤中的总氮和有效磷,从而实现农业可持续性。当在玉米和小麦作物上施用农家肥和NP肥时,最高的碳(12 mg/kg)被封存。综合肥力管理的应用通过提高氮利用效率来减少N2O排放。施用动物粪便和NPK肥料可减少CH4进入大气,有助于缓解气候变化。综合土壤肥力管理提高了土壤肥力,有助于农业可持续发展。通过应用维持农业的综合肥力管理提高了作物产量。综合土壤肥力管理是缓解气候变化的一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on contribution of integrated soil fertility management for climate change mitigation and agricultural sustainability
Abstract Agriculture is one of the largest contributors to greenhouse gas emissions, derived from livestock farming (enteric fermentation and manure management) and emissions from agricultural soils (i.e. application of excessive N fertilizers and decomposition of organic material). The review covers contribution of integrated fertility management to mitigate climate change and sustain agricultural production. Combined application of farmyard manure and mineral fertilizer is very economical than sole NP application in maintaining sustainable agricultural productivity. Maximum sustained crop production (2.88 t/ha) was obtained when 69 kg of NP fertilizer was applied with 10 t/ha farmyard manure. Combined application of tie ridge, farmyard manure and NP fertilizer contribute for agricultural sustainability. Applying integrated soil fertility increase total nitrogen and available phosphorus in the soil for agricultural sustainability. The highest carbon (12 mg/kg) was sequestered when farmyard manure was applied with NP fertilizer on maize and wheat cropped alfisoils. Application of integrated fertility management reduces N2O emissions by increase nitrogen-use efficiency. Application of animal manure and NPK fertilizer reduce CH4 into the atmosphere contributing for climate change mitigation. Integrated soil fertility management improves soil fertility contributing for agricultural sustainability. Crop yield was improved by application of integrated fertility management which sustains agriculture. Integrated soil fertility management was on option for climate change mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Environmental Science
Cogent Environmental Science ENVIRONMENTAL SCIENCES-
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信