{"title":"截断拉普拉斯算子的反Faber-Krahn不等式","authors":"E. Parini, J. Rossi, A. Salort","doi":"10.5565/publmat6622201","DOIUrl":null,"url":null,"abstract":"In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $\\mu_1(\\Omega)$ of the fully nonlinear eigenvalue problem \\[ \\label{eq} \\left\\{\\begin{array}{r c l l} -\\lambda_N(D^2 u) & = & \\mu u & \\text{in }\\Omega, \\\\ u & = & 0 & \\text{on }\\partial \\Omega. \\end{array}\\right. \\] Here $ \\lambda_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $\\Omega \\subset \\mathbb{R}^N$, the inequality \\[ \\mu_1(\\Omega) \\leq \\frac{\\pi^2}{[\\text{diam}(\\Omega)]^2} = \\mu_1(B_{\\text{diam}(\\Omega)/2}),\\] where $\\text{diam}(\\Omega)$ is the diameter of $\\Omega$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. \nFurthermore, we discuss the minimization of $\\mu_1(\\Omega)$ under different kinds of constraints.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reverse Faber-Krahn inequality for a truncated Laplacian operator\",\"authors\":\"E. Parini, J. Rossi, A. Salort\",\"doi\":\"10.5565/publmat6622201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $\\\\mu_1(\\\\Omega)$ of the fully nonlinear eigenvalue problem \\\\[ \\\\label{eq} \\\\left\\\\{\\\\begin{array}{r c l l} -\\\\lambda_N(D^2 u) & = & \\\\mu u & \\\\text{in }\\\\Omega, \\\\\\\\ u & = & 0 & \\\\text{on }\\\\partial \\\\Omega. \\\\end{array}\\\\right. \\\\] Here $ \\\\lambda_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $\\\\Omega \\\\subset \\\\mathbb{R}^N$, the inequality \\\\[ \\\\mu_1(\\\\Omega) \\\\leq \\\\frac{\\\\pi^2}{[\\\\text{diam}(\\\\Omega)]^2} = \\\\mu_1(B_{\\\\text{diam}(\\\\Omega)/2}),\\\\] where $\\\\text{diam}(\\\\Omega)$ is the diameter of $\\\\Omega$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. \\nFurthermore, we discuss the minimization of $\\\\mu_1(\\\\Omega)$ under different kinds of constraints.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reverse Faber-Krahn inequality for a truncated Laplacian operator
In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $\mu_1(\Omega)$ of the fully nonlinear eigenvalue problem \[ \label{eq} \left\{\begin{array}{r c l l} -\lambda_N(D^2 u) & = & \mu u & \text{in }\Omega, \\ u & = & 0 & \text{on }\partial \Omega. \end{array}\right. \] Here $ \lambda_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $\Omega \subset \mathbb{R}^N$, the inequality \[ \mu_1(\Omega) \leq \frac{\pi^2}{[\text{diam}(\Omega)]^2} = \mu_1(B_{\text{diam}(\Omega)/2}),\] where $\text{diam}(\Omega)$ is the diameter of $\Omega$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint.
Furthermore, we discuss the minimization of $\mu_1(\Omega)$ under different kinds of constraints.