D. Santo, F. Fanelli, Gabriele Sbaiz, Aneta Wr'oblewska-Kami'nska
{"title":"地球物理流动动力学中重力的影响","authors":"D. Santo, F. Fanelli, Gabriele Sbaiz, Aneta Wr'oblewska-Kami'nska","doi":"10.3934/mine.2023008","DOIUrl":null,"url":null,"abstract":"In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($ {\\rm{Ma}} $, $ {\\rm{Ro}} $ and $ {\\rm{Fr}} $, respectively). The focus here is on the effects of gravity: albeit remaining in a low stratification regime $ {\\rm{Ma}}/{\\rm{Fr}}\\, \\rightarrow\\, 0 $, we consider scaling for the Froude number which go beyond the \"critical\" value $ {\\rm{Fr\\, = \\, \\sqrt{\\rm{Ma}}}} $. The rigorous derivation of suitable limiting systems for the various choices of the scaling is shown by means of a compensated compactness argument. Exploiting the precise structure of the gravitational force is the key to get the convergence.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the influence of gravity in the dynamics of geophysical flows\",\"authors\":\"D. Santo, F. Fanelli, Gabriele Sbaiz, Aneta Wr'oblewska-Kami'nska\",\"doi\":\"10.3934/mine.2023008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($ {\\\\rm{Ma}} $, $ {\\\\rm{Ro}} $ and $ {\\\\rm{Fr}} $, respectively). The focus here is on the effects of gravity: albeit remaining in a low stratification regime $ {\\\\rm{Ma}}/{\\\\rm{Fr}}\\\\, \\\\rightarrow\\\\, 0 $, we consider scaling for the Froude number which go beyond the \\\"critical\\\" value $ {\\\\rm{Fr\\\\, = \\\\, \\\\sqrt{\\\\rm{Ma}}}} $. The rigorous derivation of suitable limiting systems for the various choices of the scaling is shown by means of a compensated compactness argument. Exploiting the precise structure of the gravitational force is the key to get the convergence.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the influence of gravity in the dynamics of geophysical flows
In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($ {\rm{Ma}} $, $ {\rm{Ro}} $ and $ {\rm{Fr}} $, respectively). The focus here is on the effects of gravity: albeit remaining in a low stratification regime $ {\rm{Ma}}/{\rm{Fr}}\, \rightarrow\, 0 $, we consider scaling for the Froude number which go beyond the "critical" value $ {\rm{Fr\, = \, \sqrt{\rm{Ma}}}} $. The rigorous derivation of suitable limiting systems for the various choices of the scaling is shown by means of a compensated compactness argument. Exploiting the precise structure of the gravitational force is the key to get the convergence.