基于神经网络的微波成像颈部诊断技术的初步实验研究

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Dachena, A. Fedeli, A. Fanti, M. B. Lodi, G. Fumera, M. Pastorino, A. Randazzo
{"title":"基于神经网络的微波成像颈部诊断技术的初步实验研究","authors":"C. Dachena, A. Fedeli, A. Fanti, M. B. Lodi, G. Fumera, M. Pastorino, A. Randazzo","doi":"10.1109/LMWC.2022.3194805","DOIUrl":null,"url":null,"abstract":"In this letter, a microwave imaging strategy based on an artificial neural network (ANN) is applied, for the first time, to experimental data gathered from simplified neck phantoms. The ANN is used for solving the underlying inverse scattering problem, with the aim of retrieving the dielectric properties of the neck for monitoring and diagnostic purposes. The ANN is trained using simulated phantoms, to overcome the limited availability of experimental data. First, a simple configuration with a liquid-filled glass beaker is tested. Then, simplified 3-D-printed models of the human neck are considered. The preliminary findings indicate the possibility of training the network with numerical simulations and testing it against experimental measurements.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1495-1498"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Initial Experimental Tests of an ANN-Based Microwave Imaging Technique for Neck Diagnostics\",\"authors\":\"C. Dachena, A. Fedeli, A. Fanti, M. B. Lodi, G. Fumera, M. Pastorino, A. Randazzo\",\"doi\":\"10.1109/LMWC.2022.3194805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a microwave imaging strategy based on an artificial neural network (ANN) is applied, for the first time, to experimental data gathered from simplified neck phantoms. The ANN is used for solving the underlying inverse scattering problem, with the aim of retrieving the dielectric properties of the neck for monitoring and diagnostic purposes. The ANN is trained using simulated phantoms, to overcome the limited availability of experimental data. First, a simple configuration with a liquid-filled glass beaker is tested. Then, simplified 3-D-printed models of the human neck are considered. The preliminary findings indicate the possibility of training the network with numerical simulations and testing it against experimental measurements.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1495-1498\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3194805\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3194805","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

在这封信中,基于人工神经网络(ANN)的微波成像策略首次应用于从简化的颈部幻影中收集的实验数据。人工神经网络用于解决潜在的逆散射问题,目的是检索颈部的介电特性,用于监测和诊断目的。人工神经网络使用模拟的幻影进行训练,以克服实验数据的有限可用性。首先,测试了一个带有装满液体的玻璃烧杯的简单配置。然后,考虑了人体颈部的简化3d打印模型。初步研究结果表明,可以通过数值模拟训练该网络,并对其进行实验测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Initial Experimental Tests of an ANN-Based Microwave Imaging Technique for Neck Diagnostics
In this letter, a microwave imaging strategy based on an artificial neural network (ANN) is applied, for the first time, to experimental data gathered from simplified neck phantoms. The ANN is used for solving the underlying inverse scattering problem, with the aim of retrieving the dielectric properties of the neck for monitoring and diagnostic purposes. The ANN is trained using simulated phantoms, to overcome the limited availability of experimental data. First, a simple configuration with a liquid-filled glass beaker is tested. Then, simplified 3-D-printed models of the human neck are considered. The preliminary findings indicate the possibility of training the network with numerical simulations and testing it against experimental measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信