幂积分基循环立方场的表征

IF 0.4 4区 数学 Q4 MATHEMATICS
Tomokazu Kashio, Ryutaro Sekigawa
{"title":"幂积分基循环立方场的表征","authors":"Tomokazu Kashio, Ryutaro Sekigawa","doi":"10.2996/kmj44204","DOIUrl":null,"url":null,"abstract":"We provide an equivalent condition for the monogenity of the ring of integers of any cyclic cubic field. We show that if a cyclic cubic field is monogenic then it is a simplest cubic field $K_t$ which is the splitting field of a Shanks cubic polynomial $f_t(x):=x^3-tx^2-(t + 3)x-1$ with $t \\in \\mathbb Z$. Moreover we give an equivalent condition for when $K_t$ is monogenic, which is explicitly written in terms of $t$.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The characterization of cyclic cubic fields with power integral bases\",\"authors\":\"Tomokazu Kashio, Ryutaro Sekigawa\",\"doi\":\"10.2996/kmj44204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an equivalent condition for the monogenity of the ring of integers of any cyclic cubic field. We show that if a cyclic cubic field is monogenic then it is a simplest cubic field $K_t$ which is the splitting field of a Shanks cubic polynomial $f_t(x):=x^3-tx^2-(t + 3)x-1$ with $t \\\\in \\\\mathbb Z$. Moreover we give an equivalent condition for when $K_t$ is monogenic, which is explicitly written in terms of $t$.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj44204\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj44204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们为任何循环三次域的整数环的单胚性提供了一个等价条件。我们证明了如果一个循环三次域是单基因的,那么它是最简单的三次域$K_t$,它是Shanks三次多项式$f_t(x):=x^3-tx^2-(t+3)x-1$与$t\in\mathbb Z$的分裂域。此外,我们给出了$K_t$是单基因的等价条件,它是用$t$显式写成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The characterization of cyclic cubic fields with power integral bases
We provide an equivalent condition for the monogenity of the ring of integers of any cyclic cubic field. We show that if a cyclic cubic field is monogenic then it is a simplest cubic field $K_t$ which is the splitting field of a Shanks cubic polynomial $f_t(x):=x^3-tx^2-(t + 3)x-1$ with $t \in \mathbb Z$. Moreover we give an equivalent condition for when $K_t$ is monogenic, which is explicitly written in terms of $t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信