A. Mahalingam, Sofia Rani Shaik, L. Kaushik, M. Palanisamy, P. Kalita
{"title":"偏远地区配备多孔辐射燃烧器的小型医疗废物焚烧炉设计与生命周期评价","authors":"A. Mahalingam, Sofia Rani Shaik, L. Kaushik, M. Palanisamy, P. Kalita","doi":"10.1080/00194506.2022.2098180","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the design of a Small-scale Medical Waste Incinerator (SMWI) equipped with an LPG-operated Porous Radiant Burner (PRBLPG) is presented as a solution for disposing of medical waste generated in remote areas. Based on simple mass and heat balance analysis, SMWI having primary and secondary chambers with a volume of 1 and 0.754 m3 is designed. The proposed SMWI is evaluated for its environmental impact by performing a Life Cycle Assessment (LCA) and compared with an SMWI equipped with an Electric Heater (SMWI–EH). The total primary energy required for the construction of SMWI is 48285.56 MJ. It is found that the damage caused by the operation of PRBLPG in SMWI is lesser when compared to that of an Electric Heater (EH). In SMWI–PRB, LPG consumption contributed to about 17488.27 kg CO2−eq in the global warming category, whereas in the case of SMWI–EH, electricity consumption contributed to about 243766.11 kg CO2−eq. The operation of SMWI–PRB showed a reduction of about 54% in the resource utilisation category in comparison with SMWI–EH. The results obtained from the LCA study indicated that PRBLPG is a better option as an auxiliary heating device in SMWI than EH due to its environmental superiority. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":"64 1","pages":"494 - 507"},"PeriodicalIF":0.9000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Life Cycle Assessment of small-scale medical waste incinerator equipped with Porous Radiant Burner for remote areas\",\"authors\":\"A. Mahalingam, Sofia Rani Shaik, L. Kaushik, M. Palanisamy, P. Kalita\",\"doi\":\"10.1080/00194506.2022.2098180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, the design of a Small-scale Medical Waste Incinerator (SMWI) equipped with an LPG-operated Porous Radiant Burner (PRBLPG) is presented as a solution for disposing of medical waste generated in remote areas. Based on simple mass and heat balance analysis, SMWI having primary and secondary chambers with a volume of 1 and 0.754 m3 is designed. The proposed SMWI is evaluated for its environmental impact by performing a Life Cycle Assessment (LCA) and compared with an SMWI equipped with an Electric Heater (SMWI–EH). The total primary energy required for the construction of SMWI is 48285.56 MJ. It is found that the damage caused by the operation of PRBLPG in SMWI is lesser when compared to that of an Electric Heater (EH). In SMWI–PRB, LPG consumption contributed to about 17488.27 kg CO2−eq in the global warming category, whereas in the case of SMWI–EH, electricity consumption contributed to about 243766.11 kg CO2−eq. The operation of SMWI–PRB showed a reduction of about 54% in the resource utilisation category in comparison with SMWI–EH. The results obtained from the LCA study indicated that PRBLPG is a better option as an auxiliary heating device in SMWI than EH due to its environmental superiority. GRAPHICAL ABSTRACT\",\"PeriodicalId\":13430,\"journal\":{\"name\":\"Indian Chemical Engineer\",\"volume\":\"64 1\",\"pages\":\"494 - 507\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Chemical Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00194506.2022.2098180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2022.2098180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文介绍了一种配备液化石油气操作多孔辐射燃烧器(PRBLPG)的小型医疗废物焚烧炉(SMWI)的设计,作为处理偏远地区医疗废物的解决方案。基于简单的质量和热平衡分析,设计了具有容积分别为1和0.754m3的一次室和二次室的SMWI。通过进行生命周期评估(LCA)来评估拟议SMWI的环境影响,并将其与配备电加热器的SMWI(SMWI–EH)进行比较。SMWI建设所需的一次能源总量为48285.56 MJ。研究发现,与电加热器(EH)相比,SMWI中PRBLPG的运行所造成的损坏较小。在SMWI–PRB,液化石油气消费量约占17488.27 kg CO2−eq属于全球变暖类别,而在SMWI–EH的情况下,电力消耗约占243766.11 kg CO2−当量。SMWI–PRB的运营显示,与SMWI–EH相比,资源利用类别减少了约54%。LCA研究结果表明,PRBLPG作为SMWI的辅助加热装置比EH更好,因为它具有环境优势。图形摘要
Design and Life Cycle Assessment of small-scale medical waste incinerator equipped with Porous Radiant Burner for remote areas
ABSTRACT In this paper, the design of a Small-scale Medical Waste Incinerator (SMWI) equipped with an LPG-operated Porous Radiant Burner (PRBLPG) is presented as a solution for disposing of medical waste generated in remote areas. Based on simple mass and heat balance analysis, SMWI having primary and secondary chambers with a volume of 1 and 0.754 m3 is designed. The proposed SMWI is evaluated for its environmental impact by performing a Life Cycle Assessment (LCA) and compared with an SMWI equipped with an Electric Heater (SMWI–EH). The total primary energy required for the construction of SMWI is 48285.56 MJ. It is found that the damage caused by the operation of PRBLPG in SMWI is lesser when compared to that of an Electric Heater (EH). In SMWI–PRB, LPG consumption contributed to about 17488.27 kg CO2−eq in the global warming category, whereas in the case of SMWI–EH, electricity consumption contributed to about 243766.11 kg CO2−eq. The operation of SMWI–PRB showed a reduction of about 54% in the resource utilisation category in comparison with SMWI–EH. The results obtained from the LCA study indicated that PRBLPG is a better option as an auxiliary heating device in SMWI than EH due to its environmental superiority. GRAPHICAL ABSTRACT