采用分子动力学方法研究了三维纳米压痕下金属玻璃模型的变形行为

Q1 Physics and Astronomy
Haidong Liu, Yunfeng Shi, Liping Huang
{"title":"采用分子动力学方法研究了三维纳米压痕下金属玻璃模型的变形行为","authors":"Haidong Liu,&nbsp;Yunfeng Shi,&nbsp;Liping Huang","doi":"10.1016/j.nocx.2022.100130","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, molecular dynamics (MD) simulation has been used to study the deformation behaviors of glass under nanoindentation, mainly using ideal geometries like a spherical indenter or a 2.5-D sample geometry to simplify post-analysis and save computational costs. To generate stress/strain fields that can be directly compared with experiments, we developed a 3-D nanoindentation protocol in this work to study the deformation behaviors of a model metallic glass under sharp contact loading in MD. Our studies show that the indenter sharpness controls the shear band formation, and the interaction between shear bands dictates the crack initiation in the model metallic glass. Shear bands and residual stress fields in the model metallic glass from our simulated nanoindentation tests are consistent with observations in soda-lime silicate (SLS) glass from the instrumented indentation in experiments, as both of them favor shear deformation under sharp contact loading.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"16 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000504/pdfft?md5=a8ef7b2acf61884b22048e35a4b66436&pid=1-s2.0-S2590159122000504-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Deformation behaviors of a model metallic glass under 3-D nanoindentation studied in molecular dynamics simulation\",\"authors\":\"Haidong Liu,&nbsp;Yunfeng Shi,&nbsp;Liping Huang\",\"doi\":\"10.1016/j.nocx.2022.100130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, molecular dynamics (MD) simulation has been used to study the deformation behaviors of glass under nanoindentation, mainly using ideal geometries like a spherical indenter or a 2.5-D sample geometry to simplify post-analysis and save computational costs. To generate stress/strain fields that can be directly compared with experiments, we developed a 3-D nanoindentation protocol in this work to study the deformation behaviors of a model metallic glass under sharp contact loading in MD. Our studies show that the indenter sharpness controls the shear band formation, and the interaction between shear bands dictates the crack initiation in the model metallic glass. Shear bands and residual stress fields in the model metallic glass from our simulated nanoindentation tests are consistent with observations in soda-lime silicate (SLS) glass from the instrumented indentation in experiments, as both of them favor shear deformation under sharp contact loading.</p></div>\",\"PeriodicalId\":37132,\"journal\":{\"name\":\"Journal of Non-Crystalline Solids: X\",\"volume\":\"16 \",\"pages\":\"Article 100130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590159122000504/pdfft?md5=a8ef7b2acf61884b22048e35a4b66436&pid=1-s2.0-S2590159122000504-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Crystalline Solids: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590159122000504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

近年来,分子动力学(MD)模拟被用于研究纳米压痕下玻璃的变形行为,主要采用理想的几何形状,如球形压痕或2.5维样品几何形状,以简化后分析和节省计算成本。为了产生可以直接与实验相比较的应力/应变场,我们开发了一种三维纳米压痕方案来研究MD中模型金属玻璃在尖锐接触载荷下的变形行为。我们的研究表明,压痕锐度控制剪切带的形成,剪切带之间的相互作用决定了模型金属玻璃的裂纹萌生。模拟纳米压痕实验中模型金属玻璃的剪切带和残余应力场与实验中仪器压痕在钠钙硅酸盐(SLS)玻璃中的观察结果一致,两者都有利于在尖锐接触载荷下的剪切变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation behaviors of a model metallic glass under 3-D nanoindentation studied in molecular dynamics simulation

In recent years, molecular dynamics (MD) simulation has been used to study the deformation behaviors of glass under nanoindentation, mainly using ideal geometries like a spherical indenter or a 2.5-D sample geometry to simplify post-analysis and save computational costs. To generate stress/strain fields that can be directly compared with experiments, we developed a 3-D nanoindentation protocol in this work to study the deformation behaviors of a model metallic glass under sharp contact loading in MD. Our studies show that the indenter sharpness controls the shear band formation, and the interaction between shear bands dictates the crack initiation in the model metallic glass. Shear bands and residual stress fields in the model metallic glass from our simulated nanoindentation tests are consistent with observations in soda-lime silicate (SLS) glass from the instrumented indentation in experiments, as both of them favor shear deformation under sharp contact loading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信