一类特殊二次优化问题的无cq最优性条件和强对偶公式

O. Kostyukova, T. Tchemisova
{"title":"一类特殊二次优化问题的无cq最优性条件和强对偶公式","authors":"O. Kostyukova, T. Tchemisova","doi":"10.19139/soic-2310-5070-915","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a special class of conic optimization problems, consisting of set-semidefinite (or Ksemidefinite) programming problems, where the set K is a polyhedral convex cone. For these problems, we introduce the concept of immobile indices and study the properties of the set of normalized immobile indices and the feasible set. This study provides the main result of the paper, which is to formulate and prove the new first-order optimality conditions in the form of a criterion. The optimality conditions are explicit and do not use any constraint qualifications. For the case of a linear cost function, we reformulate the K-semidefinite problem in a regularized form and construct its dual. We show that the pair of the primal and dual regularized problems satisfies the strong duality relation which means that the duality gap is vanishing.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"668-683"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CQ-free optimality conditions and strong dual formulations for a special conic optimization problem\",\"authors\":\"O. Kostyukova, T. Tchemisova\",\"doi\":\"10.19139/soic-2310-5070-915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a special class of conic optimization problems, consisting of set-semidefinite (or Ksemidefinite) programming problems, where the set K is a polyhedral convex cone. For these problems, we introduce the concept of immobile indices and study the properties of the set of normalized immobile indices and the feasible set. This study provides the main result of the paper, which is to formulate and prove the new first-order optimality conditions in the form of a criterion. The optimality conditions are explicit and do not use any constraint qualifications. For the case of a linear cost function, we reformulate the K-semidefinite problem in a regularized form and construct its dual. We show that the pair of the primal and dual regularized problems satisfies the strong duality relation which means that the duality gap is vanishing.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"668-683\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了一类特殊的由集半定(或K半定)规划问题组成的二次优化问题,其中集K是一个多面体凸锥。针对这些问题,我们引入了不动指标的概念,研究了归一化不动指标集和可行集的性质。本研究提供了本文的主要成果,即以判据的形式表述并证明了新的一阶最优性条件。最优性条件是显式的,不使用任何约束条件。对于线性代价函数,我们用正则形式重新表述了k -半定问题,并构造了它的对偶。证明了原正则化问题和对偶正则化问题对满足强对偶关系,即对偶间隙消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CQ-free optimality conditions and strong dual formulations for a special conic optimization problem
In this paper, we consider a special class of conic optimization problems, consisting of set-semidefinite (or Ksemidefinite) programming problems, where the set K is a polyhedral convex cone. For these problems, we introduce the concept of immobile indices and study the properties of the set of normalized immobile indices and the feasible set. This study provides the main result of the paper, which is to formulate and prove the new first-order optimality conditions in the form of a criterion. The optimality conditions are explicit and do not use any constraint qualifications. For the case of a linear cost function, we reformulate the K-semidefinite problem in a regularized form and construct its dual. We show that the pair of the primal and dual regularized problems satisfies the strong duality relation which means that the duality gap is vanishing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信