Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari
求助PDF
{"title":"广义函数的扩展Colombeau代数中初始数据奇异的分数阶Schrödinger方程的求解","authors":"Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari","doi":"10.1155/2023/3493912","DOIUrl":null,"url":null,"abstract":"<jats:p>This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions. <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"{\" close=\"\" separators=\"|\">\n <mrow>\n <mtable class=\"smallmatrix\">\n <mtr>\n <mtd>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mrow>\n <mi>ı</mi>\n <mrow>\n <mi>∂</mi>\n <mo>/</mo>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mrow>\n </mrow>\n </mrow>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>−</mo>\n <mo mathvariant=\"fraktur\">△</mo>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>+</mo>\n <mi>v</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>t</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi mathvariant=\"double-struck\">R</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi mathvariant=\"double-struck\">R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi>v</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mi>δ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mi>δ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n </mtable>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>δ</mi>\n </math>\n </jats:inline-formula> is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.</jats:p>","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Fractional Schrödinger Equation with Singular Initial Data in the Extended Colombeau Algebra of Generalized Functions\",\"authors\":\"Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari\",\"doi\":\"10.1155/2023/3493912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions. <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mfenced open=\\\"{\\\" close=\\\"\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtable class=\\\"smallmatrix\\\">\\n <mtr>\\n <mtd>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mrow>\\n <mi>ı</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mo>/</mo>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </mrow>\\n </mrow>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>−</mo>\\n <mo mathvariant=\\\"fraktur\\\">△</mo>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>+</mo>\\n <mi>v</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">R</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">R</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi>v</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mi>δ</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mi>δ</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n </mtable>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>δ</mi>\\n </math>\\n </jats:inline-formula> is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.</jats:p>\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3493912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3493912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Solving the Fractional Schrödinger Equation with Singular Initial Data in the Extended Colombeau Algebra of Generalized Functions
This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions.
1
/
ı
∂
/
∂
t
u
t
,
x
−
△
u
t
,
x
+
v
x
u
t
,
x
=
0
,
t
∈
R
+
,
x
∈
R
n
,
v
x
=
δ
x
,
u
0
,
x
=
δ
x
,
where
δ
is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.