广义函数的扩展Colombeau代数中初始数据奇异的分数阶Schrödinger方程的求解

IF 1.4 Q2 MATHEMATICS, APPLIED
Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari
{"title":"广义函数的扩展Colombeau代数中初始数据奇异的分数阶Schrödinger方程的求解","authors":"Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari","doi":"10.1155/2023/3493912","DOIUrl":null,"url":null,"abstract":"<jats:p>This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions. <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"{\" close=\"\" separators=\"|\">\n <mrow>\n <mtable class=\"smallmatrix\">\n <mtr>\n <mtd>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mrow>\n <mi>ı</mi>\n <mrow>\n <mi>∂</mi>\n <mo>/</mo>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mrow>\n </mrow>\n </mrow>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>−</mo>\n <mo mathvariant=\"fraktur\">△</mo>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>+</mo>\n <mi>v</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>t</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi mathvariant=\"double-struck\">R</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi mathvariant=\"double-struck\">R</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi>v</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mi>δ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi mathvariant=\"fraktur\">u</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>=</mo>\n <mi>δ</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mtext>,</mtext>\n </mtd>\n </mtr>\n </mtable>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>δ</mi>\n </math>\n </jats:inline-formula> is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.</jats:p>","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Fractional Schrödinger Equation with Singular Initial Data in the Extended Colombeau Algebra of Generalized Functions\",\"authors\":\"Ali El Mfadel, S. Melliani, A. Taqbibt, M. Elomari\",\"doi\":\"10.1155/2023/3493912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions. <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mfenced open=\\\"{\\\" close=\\\"\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtable class=\\\"smallmatrix\\\">\\n <mtr>\\n <mtd>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mrow>\\n <mi>ı</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mo>/</mo>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </mrow>\\n </mrow>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>−</mo>\\n <mo mathvariant=\\\"fraktur\\\">△</mo>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>+</mo>\\n <mi>v</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">R</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">R</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi>v</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mi>δ</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi mathvariant=\\\"fraktur\\\">u</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mo>=</mo>\\n <mi>δ</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mtext>,</mtext>\\n </mtd>\\n </mtr>\\n </mtable>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>δ</mi>\\n </math>\\n </jats:inline-formula> is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.</jats:p>\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3493912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3493912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是强调以下Schrödinger问题在广义函数的扩展Colombeau代数中的存在唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the Fractional Schrödinger Equation with Singular Initial Data in the Extended Colombeau Algebra of Generalized Functions
This manuscript aims to highlight the existence and uniqueness results for the following Schrödinger problem in the extended Colombeau algebra of generalized functions. 1 / ı / t u t , x u t , x + v x u t , x = 0 , t R + , x R n , v x = δ x , u 0 , x = δ x , where δ is the Dirac distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our article by establishing the association concept of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信