S. Vidawati, J. Gerlach, Benjamin Herold, B. Rauschenbach
{"title":"离子束辅助沉积在聚合物聚酰亚胺基底上外延GaN薄膜的结构表征","authors":"S. Vidawati, J. Gerlach, Benjamin Herold, B. Rauschenbach","doi":"10.4236/AMPC.2020.109015","DOIUrl":null,"url":null,"abstract":"The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of High-Energy Electron Diffraction (RHEED), Scanning Electron Microscopy (SEM) and Quantum Design Physical Properties Measurement System, the behaviour of hexagonal GaN thin films is investigated. The result showed that the high quality of the deposited GaN layers kept appearing for many parameters depending on the temperature greatly. The behaviour of high quality of epitaxial GaN coating on the polyimide polymer substrates is a promising material for optoelectronic devices and semiconductor devices application.","PeriodicalId":68199,"journal":{"name":"材料物理与化学进展(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Characterization of Thin Epitaxial GaN Films on Polymer Polyimides Substrates by Ion Beam Assisted Deposition\",\"authors\":\"S. Vidawati, J. Gerlach, Benjamin Herold, B. Rauschenbach\",\"doi\":\"10.4236/AMPC.2020.109015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of High-Energy Electron Diffraction (RHEED), Scanning Electron Microscopy (SEM) and Quantum Design Physical Properties Measurement System, the behaviour of hexagonal GaN thin films is investigated. The result showed that the high quality of the deposited GaN layers kept appearing for many parameters depending on the temperature greatly. The behaviour of high quality of epitaxial GaN coating on the polyimide polymer substrates is a promising material for optoelectronic devices and semiconductor devices application.\",\"PeriodicalId\":68199,\"journal\":{\"name\":\"材料物理与化学进展(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料物理与化学进展(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/AMPC.2020.109015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料物理与化学进展(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/AMPC.2020.109015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural Characterization of Thin Epitaxial GaN Films on Polymer Polyimides Substrates by Ion Beam Assisted Deposition
The Epitaxial GaN thin films have been fabricated by Ion Beam Assisted Deposition (IBAD) process using nitrogen ions with hyperthermal energies on the polyimides polymer substrates. By applying with the Reflection of High-Energy Electron Diffraction (RHEED), Scanning Electron Microscopy (SEM) and Quantum Design Physical Properties Measurement System, the behaviour of hexagonal GaN thin films is investigated. The result showed that the high quality of the deposited GaN layers kept appearing for many parameters depending on the temperature greatly. The behaviour of high quality of epitaxial GaN coating on the polyimide polymer substrates is a promising material for optoelectronic devices and semiconductor devices application.