离散生存模型中的正则化:套索和梯度提升的比较

IF 0.4 Q4 STATISTICS & PROBABILITY
A. Bere, Godfrey H. Sithuba, Coster Mabvuu, Retang Mashabela, C. Sigauke, K. Kyei
{"title":"离散生存模型中的正则化:套索和梯度提升的比较","authors":"A. Bere, Godfrey H. Sithuba, Coster Mabvuu, Retang Mashabela, C. Sigauke, K. Kyei","doi":"10.37920/SASJ.2021.55.1.3","DOIUrl":null,"url":null,"abstract":"We present the results of a simulation study performed to compare the accuracy of a lasso-type penalization method and gradient boosting in estimating the baseline hazard function and covariate parameters in discrete survival models. The mean square error results reveal that the lasso-type algorithm performs better in recovering the baseline hazard and covariate parameters. In particular, gradient boosting underestimates the sizes of the parameters and also has a high false positive rate. Similar results are obtained in an application to real-life data.","PeriodicalId":53997,"journal":{"name":"SOUTH AFRICAN STATISTICAL JOURNAL","volume":"55 1","pages":"29-44"},"PeriodicalIF":0.4000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularisation in discrete survival models: A comparison of lasso and gradient boosting\",\"authors\":\"A. Bere, Godfrey H. Sithuba, Coster Mabvuu, Retang Mashabela, C. Sigauke, K. Kyei\",\"doi\":\"10.37920/SASJ.2021.55.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of a simulation study performed to compare the accuracy of a lasso-type penalization method and gradient boosting in estimating the baseline hazard function and covariate parameters in discrete survival models. The mean square error results reveal that the lasso-type algorithm performs better in recovering the baseline hazard and covariate parameters. In particular, gradient boosting underestimates the sizes of the parameters and also has a high false positive rate. Similar results are obtained in an application to real-life data.\",\"PeriodicalId\":53997,\"journal\":{\"name\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"volume\":\"55 1\",\"pages\":\"29-44\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37920/SASJ.2021.55.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOUTH AFRICAN STATISTICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37920/SASJ.2021.55.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一项模拟研究的结果,以比较套索类型惩罚方法和梯度增强在估计离散生存模型中基线风险函数和协变量参数时的准确性。均方误差结果表明,套索算法在恢复基线风险和协变量参数方面具有较好的效果。特别是,梯度增强低估了参数的大小,也有很高的假阳性率。在对实际数据的应用中也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularisation in discrete survival models: A comparison of lasso and gradient boosting
We present the results of a simulation study performed to compare the accuracy of a lasso-type penalization method and gradient boosting in estimating the baseline hazard function and covariate parameters in discrete survival models. The mean square error results reveal that the lasso-type algorithm performs better in recovering the baseline hazard and covariate parameters. In particular, gradient boosting underestimates the sizes of the parameters and also has a high false positive rate. Similar results are obtained in an application to real-life data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SOUTH AFRICAN STATISTICAL JOURNAL
SOUTH AFRICAN STATISTICAL JOURNAL STATISTICS & PROBABILITY-
CiteScore
0.30
自引率
0.00%
发文量
18
期刊介绍: The journal will publish innovative contributions to the theory and application of statistics. Authoritative review articles on topics of general interest which are not readily accessible in a coherent form, will be also be considered for publication. Articles on applications or of a general nature will be published in separate sections and an author should indicate which of these sections an article is intended for. An applications article should normally consist of the analysis of actual data and need not necessarily contain new theory. The data should be made available with the article but need not necessarily be part of it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信