{"title":"关于实数的“第二”最佳逼近问题","authors":"P. Semenyuk","doi":"10.2140/moscow.2023.12.175","DOIUrl":null,"url":null,"abstract":"For a given irrational number $\\alpha$ one can define an irrationality measure function $\\psi_{\\alpha}^{[2]}(t) = \\min\\limits_{\\substack{(q, p)\\colon q, p \\in\\mathbb{Z}, 1\\leqslant q\\leqslant t, \\\\ (p, q) \\neq (p_n, q_n) ~\\forall n\\in\\mathbb{Z_{+}}}} |q\\alpha -p|$, related to the second-best approximations to $\\alpha$. In 2017 Moshchevitin studied the corresponding Diophantine constant $\\mathfrak{k}(\\alpha) = \\liminf\\limits_{t\\to\\infty} t \\cdot\\psi_{\\alpha}^{[2]}(t)$ and the corresponding spectrum $\\mathbb{L}_2 = \\{ \\lambda ~| ~\\exists\\alpha\\in\\mathbb{R\\setminus Q} \\colon \\lambda = \\mathfrak{k}(\\alpha) \\}$. In particular, he calculated two largest elements of the spectrum $\\mathbb{L}_2$. In the present paper we calculate the value for the third element of the spectrum $\\mathbb{L}_2$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a problem related to “second” best\\napproximations to a real number\",\"authors\":\"P. Semenyuk\",\"doi\":\"10.2140/moscow.2023.12.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given irrational number $\\\\alpha$ one can define an irrationality measure function $\\\\psi_{\\\\alpha}^{[2]}(t) = \\\\min\\\\limits_{\\\\substack{(q, p)\\\\colon q, p \\\\in\\\\mathbb{Z}, 1\\\\leqslant q\\\\leqslant t, \\\\\\\\ (p, q) \\\\neq (p_n, q_n) ~\\\\forall n\\\\in\\\\mathbb{Z_{+}}}} |q\\\\alpha -p|$, related to the second-best approximations to $\\\\alpha$. In 2017 Moshchevitin studied the corresponding Diophantine constant $\\\\mathfrak{k}(\\\\alpha) = \\\\liminf\\\\limits_{t\\\\to\\\\infty} t \\\\cdot\\\\psi_{\\\\alpha}^{[2]}(t)$ and the corresponding spectrum $\\\\mathbb{L}_2 = \\\\{ \\\\lambda ~| ~\\\\exists\\\\alpha\\\\in\\\\mathbb{R\\\\setminus Q} \\\\colon \\\\lambda = \\\\mathfrak{k}(\\\\alpha) \\\\}$. In particular, he calculated two largest elements of the spectrum $\\\\mathbb{L}_2$. In the present paper we calculate the value for the third element of the spectrum $\\\\mathbb{L}_2$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2023.12.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2023.12.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On a problem related to “second” best
approximations to a real number
For a given irrational number $\alpha$ one can define an irrationality measure function $\psi_{\alpha}^{[2]}(t) = \min\limits_{\substack{(q, p)\colon q, p \in\mathbb{Z}, 1\leqslant q\leqslant t, \\ (p, q) \neq (p_n, q_n) ~\forall n\in\mathbb{Z_{+}}}} |q\alpha -p|$, related to the second-best approximations to $\alpha$. In 2017 Moshchevitin studied the corresponding Diophantine constant $\mathfrak{k}(\alpha) = \liminf\limits_{t\to\infty} t \cdot\psi_{\alpha}^{[2]}(t)$ and the corresponding spectrum $\mathbb{L}_2 = \{ \lambda ~| ~\exists\alpha\in\mathbb{R\setminus Q} \colon \lambda = \mathfrak{k}(\alpha) \}$. In particular, he calculated two largest elements of the spectrum $\mathbb{L}_2$. In the present paper we calculate the value for the third element of the spectrum $\mathbb{L}_2$.