稳态参数的似然比梯度估计

Q1 Mathematics
P. Glynn, Mariana Olvera-Cravioto
{"title":"稳态参数的似然比梯度估计","authors":"P. Glynn, Mariana Olvera-Cravioto","doi":"10.1287/STSY.2018.0023","DOIUrl":null,"url":null,"abstract":"We consider a discrete-time Markov chain $\\boldsymbol{\\Phi}$ on a general state-space ${\\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\\boldsymbol{\\theta}$. Under the assumption that $\\boldsymbol{\\Phi}$ is geometrically ergodic with corresponding stationary distribution $\\pi(\\boldsymbol{\\theta})$, we are interested in estimating the gradient $\\nabla \\alpha(\\boldsymbol{\\theta})$ of the steady-state expectation $$\\alpha(\\boldsymbol{\\theta}) = \\pi( \\boldsymbol{\\theta}) f.$$ \nTo this end, we first give sufficient conditions for the differentiability of $\\alpha(\\boldsymbol{\\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/STSY.2018.0023","citationCount":"8","resultStr":"{\"title\":\"Likelihood Ratio Gradient Estimation for Steady-State Parameters\",\"authors\":\"P. Glynn, Mariana Olvera-Cravioto\",\"doi\":\"10.1287/STSY.2018.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a discrete-time Markov chain $\\\\boldsymbol{\\\\Phi}$ on a general state-space ${\\\\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\\\\boldsymbol{\\\\theta}$. Under the assumption that $\\\\boldsymbol{\\\\Phi}$ is geometrically ergodic with corresponding stationary distribution $\\\\pi(\\\\boldsymbol{\\\\theta})$, we are interested in estimating the gradient $\\\\nabla \\\\alpha(\\\\boldsymbol{\\\\theta})$ of the steady-state expectation $$\\\\alpha(\\\\boldsymbol{\\\\theta}) = \\\\pi( \\\\boldsymbol{\\\\theta}) f.$$ \\nTo this end, we first give sufficient conditions for the differentiability of $\\\\alpha(\\\\boldsymbol{\\\\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/STSY.2018.0023\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/STSY.2018.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/STSY.2018.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一般状态空间${\sf X}$上的离散时间马尔可夫链$\boldsymbol{\Phi}$,其转移概率由实值向量$\boldsymbol{\theta}$参数化。在$\boldsymbol{\Phi}$与相应的平稳分布$\pi(\boldsymbol{theta},我们首先给出了$\alpha(\boldsymbol{theta})$的可微性以及通过有限的视界期望序列计算其梯度的充分条件。然后,我们提出了两种不同的似然比估计,并分析了它们的极限行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood Ratio Gradient Estimation for Steady-State Parameters
We consider a discrete-time Markov chain $\boldsymbol{\Phi}$ on a general state-space ${\sf X}$, whose transition probabilities are parameterized by a real-valued vector $\boldsymbol{\theta}$. Under the assumption that $\boldsymbol{\Phi}$ is geometrically ergodic with corresponding stationary distribution $\pi(\boldsymbol{\theta})$, we are interested in estimating the gradient $\nabla \alpha(\boldsymbol{\theta})$ of the steady-state expectation $$\alpha(\boldsymbol{\theta}) = \pi( \boldsymbol{\theta}) f.$$ To this end, we first give sufficient conditions for the differentiability of $\alpha(\boldsymbol{\theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信