基于光梯度增强机和核密度估计的烧结鼓指数预测区间估计

IF 1.7 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Guanglei Xia, Zhaoxia Wu, Mengyuan Liu, Yushan Jiang
{"title":"基于光梯度增强机和核密度估计的烧结鼓指数预测区间估计","authors":"Guanglei Xia, Zhaoxia Wu, Mengyuan Liu, Yushan Jiang","doi":"10.1080/03019233.2023.2165535","DOIUrl":null,"url":null,"abstract":"ABSTRACT Owing to the uncertainty operation in the sintering process, it is easy to produce uncertain prediction errors in the single drum index prediction model, which makes the prediction results lack certain reliability. Accurate and reliable prediction of the drum index can help improve the drum index. In this paper, a prediction interval estimation method of drum index based on a light gradient boosting machine (LightGBM) and kernel density estimation (KDE) is proposed. LightGBM can obtain accurate points prediction of drum index, and then use the KDE method to obtain the estimated prediction interval of drum index. The comparison results of different methods show that LightGBM has high prediction performance, and KDE can well quantify the prediction error of drum index, which verifies the effectiveness of the prediction interval estimation method combined with LightGBM and KDE, and provides more reliable decision-making information for the optimisation of sintering process parameters.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":"50 1","pages":"909 - 920"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction interval estimation of sinter drum index based on light gradient boosting machine and kernel density estimation\",\"authors\":\"Guanglei Xia, Zhaoxia Wu, Mengyuan Liu, Yushan Jiang\",\"doi\":\"10.1080/03019233.2023.2165535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Owing to the uncertainty operation in the sintering process, it is easy to produce uncertain prediction errors in the single drum index prediction model, which makes the prediction results lack certain reliability. Accurate and reliable prediction of the drum index can help improve the drum index. In this paper, a prediction interval estimation method of drum index based on a light gradient boosting machine (LightGBM) and kernel density estimation (KDE) is proposed. LightGBM can obtain accurate points prediction of drum index, and then use the KDE method to obtain the estimated prediction interval of drum index. The comparison results of different methods show that LightGBM has high prediction performance, and KDE can well quantify the prediction error of drum index, which verifies the effectiveness of the prediction interval estimation method combined with LightGBM and KDE, and provides more reliable decision-making information for the optimisation of sintering process parameters.\",\"PeriodicalId\":14753,\"journal\":{\"name\":\"Ironmaking & Steelmaking\",\"volume\":\"50 1\",\"pages\":\"909 - 920\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ironmaking & Steelmaking\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/03019233.2023.2165535\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2023.2165535","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于烧结过程中的不确定性操作,单筒指标预测模型容易产生不确定的预测误差,使得预测结果缺乏一定的可靠性。准确可靠地预测转鼓指数有助于提高转鼓指数。本文提出了一种基于光梯度提升机(LightGBM)和核密度估计(KDE)的滚筒指数预测区间估计方法。LightGBM可以获得准确的鼓轮指数预测点,然后使用KDE方法获得鼓轮指数的估计预测区间。不同方法的比较结果表明,LightGBM具有较高的预测性能,KDE能够很好地量化转鼓指数的预测误差,验证了LightGBM和KDE相结合的预测区间估计方法的有效性,为烧结工艺参数的优化提供了更可靠的决策信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction interval estimation of sinter drum index based on light gradient boosting machine and kernel density estimation
ABSTRACT Owing to the uncertainty operation in the sintering process, it is easy to produce uncertain prediction errors in the single drum index prediction model, which makes the prediction results lack certain reliability. Accurate and reliable prediction of the drum index can help improve the drum index. In this paper, a prediction interval estimation method of drum index based on a light gradient boosting machine (LightGBM) and kernel density estimation (KDE) is proposed. LightGBM can obtain accurate points prediction of drum index, and then use the KDE method to obtain the estimated prediction interval of drum index. The comparison results of different methods show that LightGBM has high prediction performance, and KDE can well quantify the prediction error of drum index, which verifies the effectiveness of the prediction interval estimation method combined with LightGBM and KDE, and provides more reliable decision-making information for the optimisation of sintering process parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ironmaking & Steelmaking
Ironmaking & Steelmaking 工程技术-冶金工程
CiteScore
3.70
自引率
9.50%
发文量
125
审稿时长
2.9 months
期刊介绍: Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信