{"title":"给定Bartnik边界数据的静态真空扩展的存在性","authors":"Z. An, Lan-Hsuan Huang","doi":"10.4310/cjm.2022.v10.n1.a1","DOIUrl":null,"url":null,"abstract":"We prove the existence and local uniqueness of asymptotically flat, static vacuum metrics with arbitrarily prescribed Bartnik boundary data that are close to the induced boundary data on any star-shaped hypersurface or a general family of perturbed hypersurfaces in the Euclidean space. It confirms the existence part of the Bartnik static extension conjecture for large classes of boundary data, and the static vacuum metric obtained is geometrically unique in a neighborhood of the Euclidean metric.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Existence of static vacuum extensions with prescribed Bartnik boundary data\",\"authors\":\"Z. An, Lan-Hsuan Huang\",\"doi\":\"10.4310/cjm.2022.v10.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence and local uniqueness of asymptotically flat, static vacuum metrics with arbitrarily prescribed Bartnik boundary data that are close to the induced boundary data on any star-shaped hypersurface or a general family of perturbed hypersurfaces in the Euclidean space. It confirms the existence part of the Bartnik static extension conjecture for large classes of boundary data, and the static vacuum metric obtained is geometrically unique in a neighborhood of the Euclidean metric.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2022.v10.n1.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n1.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Existence of static vacuum extensions with prescribed Bartnik boundary data
We prove the existence and local uniqueness of asymptotically flat, static vacuum metrics with arbitrarily prescribed Bartnik boundary data that are close to the induced boundary data on any star-shaped hypersurface or a general family of perturbed hypersurfaces in the Euclidean space. It confirms the existence part of the Bartnik static extension conjecture for large classes of boundary data, and the static vacuum metric obtained is geometrically unique in a neighborhood of the Euclidean metric.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.