V. Grebenshchikova, M. Kuzmin, V. Rukavishnikov, N. Efimova, I. V. Donskikh, Artemiy A Doroshkov
{"title":"俄罗斯贝加尔湖地区铝生产对城市土壤的化学污染","authors":"V. Grebenshchikova, M. Kuzmin, V. Rukavishnikov, N. Efimova, I. V. Donskikh, Artemiy A Doroshkov","doi":"10.1177/11786221211004114","DOIUrl":null,"url":null,"abstract":"The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211004114","citationCount":"4","resultStr":"{\"title\":\"Chemical Contamination of Soil on Urban Territories With Aluminum Production in the Baikal Region, Russia\",\"authors\":\"V. Grebenshchikova, M. Kuzmin, V. Rukavishnikov, N. Efimova, I. V. Donskikh, Artemiy A Doroshkov\",\"doi\":\"10.1177/11786221211004114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/11786221211004114\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221211004114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211004114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chemical Contamination of Soil on Urban Territories With Aluminum Production in the Baikal Region, Russia
The study was conducted in 2 urbanized areas of the Baikal region of Russia. These are the cities of Shelekhov and Tayshet with their suburbs. Aluminum production has been carried out in Shelekhov for over 60 years and in Tayshet for 5 years. The purpose of the study was to determine the pollution of urban soils with toxic elements—Al, F, Be, Li, as well as Cr, Ni, Pb, and so on under the influence of industrial enterprises (aluminum and cable plants, thermal power plants). Also, the purpose of the research was to determine the effect of increased fluorite (F) in the environment on children’s health. Pure aluminum is used much less frequently than in alloys. The addition of various elements (Be, B, Li, Fe, Si, Mg, Mn, Zr, Ag, Pb, Cu, Ni, and others) increases the hardness, density, thermal conductivity, and other properties of the alloys. The area of high F content in urban soil is 15 times higher than the regional context. The maximum content of Na, Be, and Al is 2 to 4 times higher than the regional background. An increased Li content is marked only near aluminum smelters. The F content in urine samples from children living in areas with long-term pollution exposure (Shelekhov) is 1.5 to 2 times higher than in the group of children with a short exposure period (Tayshet).
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.