{"title":"曲率消失条件下黎曼扭转空间的刚度结果","authors":"G. Catino, D. Dameno, P. Mastrolia","doi":"10.1007/s10455-023-09889-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that <span>\\(\\mathbb {C}\\mathbb {P}^3\\)</span> is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09889-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Rigidity results for Riemannian twistor spaces under vanishing curvature conditions\",\"authors\":\"G. Catino, D. Dameno, P. Mastrolia\",\"doi\":\"10.1007/s10455-023-09889-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that <span>\\\\(\\\\mathbb {C}\\\\mathbb {P}^3\\\\)</span> is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09889-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09889-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09889-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rigidity results for Riemannian twistor spaces under vanishing curvature conditions
In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that \(\mathbb {C}\mathbb {P}^3\) is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.