乘积空间中的等参超曲面

IF 0.6 4区 数学 Q3 MATHEMATICS
João Batista Marques dos Santos , João Paulo dos Santos
{"title":"乘积空间中的等参超曲面","authors":"João Batista Marques dos Santos ,&nbsp;João Paulo dos Santos","doi":"10.1016/j.difgeo.2023.102005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is a space form with constant sectional curvature <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"88 ","pages":"Article 102005"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Isoparametric hypersurfaces in product spaces\",\"authors\":\"João Batista Marques dos Santos ,&nbsp;João Paulo dos Santos\",\"doi\":\"10.1016/j.difgeo.2023.102005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is a space form with constant sectional curvature <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"88 \",\"pages\":\"Article 102005\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000311\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000311","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文对积空间Qc12×Qc22中具有常主曲率的等参超曲面进行了刻画和分类,其中对于ci∈{−1,0,1}且c1≠c2, Qci2是具有常截面曲率的空间形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isoparametric hypersurfaces in product spaces

In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces Qc12×Qc22, where Qci2 is a space form with constant sectional curvature ci, for ci{1,0,1} and c1c2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信