João Batista Marques dos Santos , João Paulo dos Santos
{"title":"乘积空间中的等参超曲面","authors":"João Batista Marques dos Santos , João Paulo dos Santos","doi":"10.1016/j.difgeo.2023.102005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is a space form with constant sectional curvature <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"88 ","pages":"Article 102005"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Isoparametric hypersurfaces in product spaces\",\"authors\":\"João Batista Marques dos Santos , João Paulo dos Santos\",\"doi\":\"10.1016/j.difgeo.2023.102005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is a space form with constant sectional curvature <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"88 \",\"pages\":\"Article 102005\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000311\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000311","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we characterize and classify the isoparametric hypersurfaces with constant principal curvatures in the product spaces , where is a space form with constant sectional curvature , for and .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.