{"title":"太阳低层大气中失控电子对等离子体的耀斑能量释放和雪崩电离","authors":"Y. Tsap, Y. Kopylova, M. Karlický","doi":"10.1515/astro-2021-0028","DOIUrl":null,"url":null,"abstract":"Abstract The analysis of the electron acceleration by the quasi-stationary sub-Dreiser electric fields in the lower solar atmosphere has been done. It has been shown that the Dreiser electric field turned out to be several orders of magnitude larger than coronal values due to the inelastic collisions between electrons and hydrogen atoms. The ionization of hydrogen atoms gives rise to the resulting secondary electrons, which become runaway under the action of sub-Dreiser electric fields. This causes an further avalanche-like ionization of the plasma and leads to the acceleration of the large number of fast electrons up to relativistic energies at small (≲ 100 km) distances.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"30 1","pages":"216 - 218"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flare energy release and avalanche ionization of plasma by runaway electrons in lower solar atmosphere\",\"authors\":\"Y. Tsap, Y. Kopylova, M. Karlický\",\"doi\":\"10.1515/astro-2021-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The analysis of the electron acceleration by the quasi-stationary sub-Dreiser electric fields in the lower solar atmosphere has been done. It has been shown that the Dreiser electric field turned out to be several orders of magnitude larger than coronal values due to the inelastic collisions between electrons and hydrogen atoms. The ionization of hydrogen atoms gives rise to the resulting secondary electrons, which become runaway under the action of sub-Dreiser electric fields. This causes an further avalanche-like ionization of the plasma and leads to the acceleration of the large number of fast electrons up to relativistic energies at small (≲ 100 km) distances.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\"30 1\",\"pages\":\"216 - 218\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2021-0028\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2021-0028","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Flare energy release and avalanche ionization of plasma by runaway electrons in lower solar atmosphere
Abstract The analysis of the electron acceleration by the quasi-stationary sub-Dreiser electric fields in the lower solar atmosphere has been done. It has been shown that the Dreiser electric field turned out to be several orders of magnitude larger than coronal values due to the inelastic collisions between electrons and hydrogen atoms. The ionization of hydrogen atoms gives rise to the resulting secondary electrons, which become runaway under the action of sub-Dreiser electric fields. This causes an further avalanche-like ionization of the plasma and leads to the acceleration of the large number of fast electrons up to relativistic energies at small (≲ 100 km) distances.
Open AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍:
The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.