Neumann和Steklov特征值的比较

IF 1 3区 数学 Q1 MATHEMATICS
A. Henrot, Marco Michetti
{"title":"Neumann和Steklov特征值的比较","authors":"A. Henrot, Marco Michetti","doi":"10.4171/jst/429","DOIUrl":null,"url":null,"abstract":"This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue $|\\Omega| \\mu_1(\\Omega)$ for a Lipschitz open set $\\Omega$ in the plane, and the normalized first (non-trivial) Steklov eigenvalue $P(\\Omega) \\sigma_1(\\Omega)$. More precisely, we study the ratio $F(\\Omega):=|\\Omega| \\mu_1(\\Omega)/P(\\Omega) \\sigma_1(\\Omega)$. We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets $\\Omega$. Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santal\\'o diagrams $(x,y)=\\left(|\\Omega| \\mu_1(\\Omega), P(\\Omega) \\sigma_1(\\Omega) \\right)$.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparison between Neumann and Steklov eigenvalues\",\"authors\":\"A. Henrot, Marco Michetti\",\"doi\":\"10.4171/jst/429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue $|\\\\Omega| \\\\mu_1(\\\\Omega)$ for a Lipschitz open set $\\\\Omega$ in the plane, and the normalized first (non-trivial) Steklov eigenvalue $P(\\\\Omega) \\\\sigma_1(\\\\Omega)$. More precisely, we study the ratio $F(\\\\Omega):=|\\\\Omega| \\\\mu_1(\\\\Omega)/P(\\\\Omega) \\\\sigma_1(\\\\Omega)$. We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets $\\\\Omega$. Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santal\\\\'o diagrams $(x,y)=\\\\left(|\\\\Omega| \\\\mu_1(\\\\Omega), P(\\\\Omega) \\\\sigma_1(\\\\Omega) \\\\right)$.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/429\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/429","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文比较了平面上Lipschitz开集$\Omega$的归一化第一(非平凡)Neumann特征值$|\Omega|\mu_1(\Omega)$和归一化第一(非平凡)Steklov特征值$P(\Omega\\sigma_1(\Omega)$。更准确地说,我们研究了比值$F(\Omega):=|\Omega|\mu_1(\Omega\mu_1)/P(\Ome茄\sigma_1(\Omega)$。如果我们不对集合$\Omega$的类进行任何限制,我们证明了这个比率可以取任意的小值或大值。然后我们把自己限制在一类平面凸域上,我们得到了它的显式边界。我们还研究了薄凸域的情况,我们给出了更精确的边界。最后给出了相应的BlaschkeSantal图$(x,y)=\left(|\Omega|\mu_1(\Omega),P(\Omega\ sigma_1(\Omega)\right)$的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison between Neumann and Steklov eigenvalues
This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue $|\Omega| \mu_1(\Omega)$ for a Lipschitz open set $\Omega$ in the plane, and the normalized first (non-trivial) Steklov eigenvalue $P(\Omega) \sigma_1(\Omega)$. More precisely, we study the ratio $F(\Omega):=|\Omega| \mu_1(\Omega)/P(\Omega) \sigma_1(\Omega)$. We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets $\Omega$. Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santal\'o diagrams $(x,y)=\left(|\Omega| \mu_1(\Omega), P(\Omega) \sigma_1(\Omega) \right)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信