{"title":"不具有Bk性质的简单一致超图最小边数的新下界","authors":"Y. Demidovich","doi":"10.1515/dma-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract A hypergraph H = (V, E) has the property Bk if there exists an assignment of two colors to V such that each edge contains at least k vertices of each color. A hypergraph is called simple if every two edges of it have at most one common vertex. We obtain a new lower bound for the minimal number of edges of n-uniform simple hypergraph without the property Bk.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New lower bound for the minimal number of edges of simple uniform hypergraph without the property Bk\",\"authors\":\"Y. Demidovich\",\"doi\":\"10.1515/dma-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A hypergraph H = (V, E) has the property Bk if there exists an assignment of two colors to V such that each edge contains at least k vertices of each color. A hypergraph is called simple if every two edges of it have at most one common vertex. We obtain a new lower bound for the minimal number of edges of n-uniform simple hypergraph without the property Bk.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New lower bound for the minimal number of edges of simple uniform hypergraph without the property Bk
Abstract A hypergraph H = (V, E) has the property Bk if there exists an assignment of two colors to V such that each edge contains at least k vertices of each color. A hypergraph is called simple if every two edges of it have at most one common vertex. We obtain a new lower bound for the minimal number of edges of n-uniform simple hypergraph without the property Bk.
期刊介绍:
The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.