MEMS中自由分子电流的积分方程:最新进展

IF 0.3 Q4 MATHEMATICS
P. Fedeli, A. Frangi
{"title":"MEMS中自由分子电流的积分方程:最新进展","authors":"P. Fedeli, A. Frangi","doi":"10.1515/caim-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract We address a Boundary Integral Equation (BIE) approach for the analysis of gas dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS). Inspired by an analogy with the radiosity equation in computer graphics, we discuss an efficient way to compute the visible domain of integration. Moreover, we tackle the issue of near singular integrals by developing a set of analytical formulas for planar polyhedral domains. Finally a validation with experimental results taken from the literature is presented.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"8 1","pages":"67 - 80"},"PeriodicalIF":0.3000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral equations for free-molecule ow in MEMS: recent advancements\",\"authors\":\"P. Fedeli, A. Frangi\",\"doi\":\"10.1515/caim-2017-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We address a Boundary Integral Equation (BIE) approach for the analysis of gas dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS). Inspired by an analogy with the radiosity equation in computer graphics, we discuss an efficient way to compute the visible domain of integration. Moreover, we tackle the issue of near singular integrals by developing a set of analytical formulas for planar polyhedral domains. Finally a validation with experimental results taken from the literature is presented.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"8 1\",\"pages\":\"67 - 80\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2017-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种边界积分方程(BIE)方法来分析微机电系统(MEMS)近真空中的气体耗散。受计算机图形学中辐射方程的启发,我们讨论了一种计算可见积分域的有效方法。此外,我们通过开发一套平面多面体域的解析公式来解决近奇异积分问题。最后用文献中的实验结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral equations for free-molecule ow in MEMS: recent advancements
Abstract We address a Boundary Integral Equation (BIE) approach for the analysis of gas dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS). Inspired by an analogy with the radiosity equation in computer graphics, we discuss an efficient way to compute the visible domain of integration. Moreover, we tackle the issue of near singular integrals by developing a set of analytical formulas for planar polyhedral domains. Finally a validation with experimental results taken from the literature is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信